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ABSTRACT

This is Volume I of two volumes of the Proceedings of the 3rd Annual

Conference on Aerospace Computational Control.

The term Computational Control was coined this year to encompass that

range of computer-based tools and capabilities needed by aerospace control

systems engineers for design, analysis, and testing of current and future

missions. This year's conference furthered the dialogue in this area begun

at the 1987 Workshop on Multibody Simulation in Pasadena and continued

at the 1988 Workshop on Computational Aspects in the Control of Flexible

Systems in Williamsburg, Virginia.

A group of over 200 engineers and computer scientists representing

government, industry, and universities convened at Oxnard for a three-day

intensive conference on computational control. The conference consisted of

thirteen sessions with a total of 107 technical papers in addition to opening

and closing panel discussions.

Conference topics included definition of tool requirements, advanced

multibody simulation formulations, articulated multibody component

representation descriptions, model reduction, parallel computation, real time

simulation, control design and analysis software, user interface issues,

testing and verification, and applications to spacecraft, robotics, and aircraft.
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EXECUTIVE SUMMARY

The term Computational Control was coined this year to encompass that range of computer-based

tools and capabilities needed by aerospace control systems engineers for design, analysis, and testing

of current and future missions. This year's conference advanced the dialogue in this area begun at

the 1987 Workshop on Multibody Simulation in Pasadena and continued at the 1988 Workshop on

Computational Aspects in the Control of Flexible Systems in Williamsburg, Virginia.

A group of over 200 engineers and computer scientists representing government, industry, and

universities convened at Oxnard for a three-day intensive conference on computational control. The

conference consisted of thirteen sessions with a total of 107 technical papers. During the conference,

eleven prominent computer hardware and control system design software companies displayed their

products via hands-on demonstrations.

It was conf'u'med at the conference that the current control design and simulation tools are a

limiting factor in today's control design and testing and are inadequate for future needs. The areas of

concern are: A) Control design tools break down for high order systems. B) Spacecraft simulation

tools are too slow to be used effectively for design and testing. C) An integrated computer-aided

modeling-design-simulation environment is needed to improve productivity.



INTRODUCTION

The objective of the Computational Control Program is to spur the development of a new

generation of articulated multibody spacecraft and robot modeling, control design, and simulation

software tools. In order to assure a research approach that meets the needs of the community, it is

necessary to bring the researcher, hardware and software developer, and user communities together

on a periodic basis to allow exchange of ideas on requirements and developing capability. This

conference provides a forum for that exchange. The term Computational Control was coined this

year and encompasses the effort begun at the 1987 Workshop on Multibody Simulation in Pasadena

and continued at the 1988 Workshop on Computational Aspects in the Control of Flexible Systems

in Williamsburg, Virginia. These workshops are now considered the first and second annual

conferences (workshops) on Computational Control, respectively.

The objectives of the 3rd annual Conference on Aerospace Computational Control were: 1) To

provide NASA, NSF, and DOD a window into current computational control research and

development in the areas of multibody dynamics formulation, concurrent processing, computational

techniques, and control analysis and simulation software. 2) To allow researchers and tool

developers to exchange ideas and experience on the correctness, efficiency, and usability of current

computational tools. 3) To identify needs in important research areas such as computer-aided control

design and multibody simulation tools which can be dealt with by government, industry, and

university combined efforts. 4) To strengthen cooperation between industry and university

researchers and aid in the transfer of technology from the research level to the users.

Each of these objectives was successfully met. Among the more than 200 conference

participants in Oxnard were representatives from government, aerospace and computer hardware and

software industries, and universities. The conference was led off by an opening session centered on

a panel discussion of requirements for computational control tools and the state-of-the-art of such

tools. The bulk of the conference consisted of thirteen sessions with a total of 107 technical papers.

The sessions ranged from multibody dynamics formulation to parallel processing methods to control

design and analysis tools to user environments. During the conference, eleven prominent computer

hardware and control system design software companies displayed their products via hands-on

demonstrations. The conference concluded with a lively panel discussion focused on future

directions with active participation by users, researchers, hardware and software developers, and

sponsors.

It was confirmed at the conference that the current control design and simulation tools are a

limiting factor in today's control design and testing and are inadequate for future needs. The areas of

concern are: A) Control design tools break down for high order systems. B) Spacecraft simulation

tools are too slow to be used effectively for design and testing. C) An integrated computer-aided
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modeling-design-simulationenvironmentisneededto improve productivity.

This report is organized into three sections: the first describes the opening session with the panel

discussion on requirements and state-of-the-art, the second section discusses highlights of the

technical sessions, and the third section captures the closing session with its panel discussion on

future directions.

OPENING SESSION

Sponsor Remarks

The conference was opened with remarks from each of the sponsors. NASA was represented by

John DiBattista, the manager of the NASA Guidance, Navigation, and Control Program, who

indicated that he planned to make the Computational Control area one of his highest priorities for

funding. Elbert Marsh, NSF program director for Dynamics, Systems, and Control, stressed the

interest of NSF in supporting basic and fundamental research in science and engineering. This

includes computational control to the extent that it addresses generic issues within dynamic systems

and control. Terry Hinnerichs, Chief of the Control and Development Branch at AFWL, described

future DOD space missions which will need the sort of expanded capability at which computational

control is aiming.

Introduction to Computational Control

The conference chair, Guy K. Man, gave an introduction to Computational Control. He

explained that this conference is a sequel to the effort begun at the 1987 Workshop on Multibody

Simulation and continued at the 1988 Workshop on Computational Aspects in the Control of Flexible

Systems. He described the recommendations from the first workshop that led to a needs assessment

effort and the formation of a multibody simulation technology verification committee. The needs

assessment showed that in selected areas of multibody simulation and computer aided control design,

orders of magnitude of improvement are necessary. The progress was interrupted at this point due to

cutoff of SDIO funding. Out of the verification effort and the needs assessment findings, the case

was made to NASA that a new program was needed. Computational Control is that new program.

The objective of Computational Control is to develop a new generation of articulated multibody

spacecraft and robot modeling, control design, and simulation prototype software tools. The

motivation behind this objective is that current tools are a limiting factor in today's control design and

verification, and are inadequate for future needs.

Panel Discussion: Requirements and State-of-the-Art

The panel discussion was organized to give computational control tool researchers, developers,

5



andusersaforum to discusstheir perceptionsof the state of the art and future requirements. The

panel comprised: Panel Chair Larry Taylor of NASA Langley, John Sunkel of NASA Johnson Space

Center, Glenn Macala of Jet Propulsion Laboratory, John Breakwell of Lockheed Missiles and

Space, Terry Hinnerichs of the Air Force Weapons Laboratory, Guy K. Man of Jet Propulsion

Laboratory, Achille Messac of C. S. Draper Laboratories, Jim Turner of Photon Research Asso-

ciates, and Alan Laub of University of California Santa Barbara. Most panel members gave opening

remarks of 5-15 minutes; Alan Laub gave a full-length paper as requested.

A brief sketch of the panelists' opening remarks follows. Larry Taylor introduced the panel

noting that if we continue business as usual, the computational burden will be overwhelming.

John Sunkel described NASA Space Station requirements. He described the space station as a

multibody system. The approach to flexible dynamics on Space Station is to separate the flexible

modes--starting at 0.1 Hz--from the control Bandwidth of 0.01 Hz. A high fidelity flexible body

simulator is needed for verification.

A test-bed environment is being developed for Space Station support. It will include orbital

dynamics, aerodynamics, gravity gradient effects, sensor and actuator models, and flexible

multibody dynamics. An early flexible body simulation dramatizes the need to improve the speed of

current simulations: a 141 mode model required 7-8 hours to simulate 300 seconds.
i

Glenn Macala discussed the NASA effort to define computational control tool user requirements.

User requirements are intended to illuminate the path towards efficient realization of computational

control tools. The approach has been to first call out the basic functions of the controls engineer in

the development of a spacecraft control system. Next, the functions of the tools needed to support

the control engineer in his task were def'med. In addition, NASA mission models were identified that

would be good candidates to use the next generation of computational control tools. The f'mal step is

to compare the needed functions with the mission models to set performance requirements on the tool

functions.

The report "Computational Control Program User Requirements," JPL Publication 89-40, is in

preparation.

John Breakwell gave a view from industry. His perspective is that control engineers typically

stick with what worked the last time. The change that he sees is that the availability of real-time

control analysis tools is giving the analyst more ability to go into the laboratory and contribute to the

test and verification activity. He feels that tools which reduce the gap between designers and

implementers would be of great value.

Terry Hinnerichs discussed Air Force space requirements. Focusing on SDI, he described a

wide variety of space systems concepts. One example of where multibody dynamics and



computationalcontrol fit in wastheproblemof a fine pointing telescope attached to a noisy laser

device.

Guy K. Man outlined the results of the multibody simulation codes user survey. A total of 243

questionnaires were sent to 78 organizations. There were 40 responses, covering 27 organizations

and 21 codes. Data collected included documentation, welcome features, additional features desired,

ease of use, typical applications, run time acceptability, and over 20 additional issues. The details

will be included in a paper in the conference proceedings.

Achille Messac discussed the Control Structure Interaction (CSI) problem-redefining it as one of

Control Structure Integrated Design. His message was that the combination of the optimal structure

and the optimal control does not necessarily yield the optimal system.

Jim Turner discussed current and possible future directions for multibody dynamics software.

He listed three technical breakthroughs which are stimulating current research: Order N algorithms,

symbolic manipulation, and parallel processing. He also identified areas with little current capability

which remain areas for potential growth. These included fluid/mechanical coupling, large deflection

flexible dynamics, and event driven activities such as robot/payload interaction.

Alan Laub gave a survey paper covering control algorithms and software. He started by agreeing

that much of today's software either is not extensible or is inadequate to address future requirements.

He advanced the folk theorem that methods that are good for hand calculation are typically poor for

digital computation.

Accuracy is seen to be dependent on: the conditioning of the problem, the numerical stability of

the algorithm, and the specifics of the hardware and software implementation. In the area of

modeling, problems were identified for transformations between transfer function and state space

realizations for large order systems. Since much problem structure is lost when second order

systems are recast as fin'st order systems, the value of developing control and synthesis methods for

state space models in second order form was stressed.

Laub described the status of current control algorithms as follows: modest size (<_200 states),

dense matrices, no exploitable structure, serial computing. Suggestions for future developments are:

use reliable components (for example LAPACK as a starting point,) create an extendible package

rather than including everything anyone could want, and plan a team approach resulting in a

coordinated, broad based, focused, long-term, carefully planned effort.

Open Discussion

Following the panel discussion, Larry Taylor opened the floor to open discussion.

During the open discussion, Ray Gluck raised the issue of funding for computational control

research. John DiBattista responded that there is a definite opportunity for increased funding--but



only if the community can clearly characterize the field as one ripe for solutions to problems of

importance to NASA.

John Hedgepeth addressed the issue of assuring that the results of computational control research

get into real applications. Comparing computational control to CSI he suggested that concrete

examples are needed to make clear where this art can help in the design of advanced performance

spacecraft in ways that are really needed by users of the system.

Ed Haug stressed the importance of Differential Algebraic Equations (DAE) in the simulation of

constrained systems. Alan Laub agreed, adding that control of DAEs is much harder than control of

ODEs.

TECHNICAL SESSIONS

Due to the size of the conference compared to previous computational control workshops, it was

necessary to break the technical sessions up into parallel sessions. The individual technical papers

are described in the conference proceedings.

Any list of highlights would certainly omit important papers, but a few items will be mentioned

to capture some of the flavor of the technical sessions. In the multibody formulation area, von

Flotow addressed the issue of the need for non-linear strain-displacement relations in dynamic

analysis--describing three options as consistent, inconsistent, and ruthless. Rodriguez outlined a

powerful new dynamic analysis approach-"spatial operator algebra." In the parallel processing area,

many authors discussed methods and advantages of f'me and coarse grain parallelization. Slafer

addressed the state-of-the-art in real-time hardware-in-the-loop simulation, and Howe put forward

new numerical integration techniques which help increase simulation speed.

A number of papers discussed dynamic analysis applications ranging from the space station to

manipulators to fighter aircraft. Others discussed emerging integrated capabilities: Russell discussed

ISM at Boeing, Bauer and Downing discussed INCA and ASTEC at NASA Goddard, Kumar discussed

TREETOPS work at Dynacs, and Canfield and Hummel discussed ASTROS and MEAD at Wright-

Patterson.

ADDITIONAL CONFERENCE ACTIVITIES

A banquet was held the second day of the conference with Ed Haug of the University of Iowa as

the featured speaker. Haug took a global perspective, looking at the competitive position of the

United States in the world. He concluded that one place that we could leverage our capabilities was



in expandeduseof simulationtechnologyto improvetheperformanceandreliability of ourproducts.

Elevensoftwareandhardwarevendorsdisplayedtheir products during the technical sessions of

the conference. These included Applied Dynamics International, AT&T/Circuit Studios, BBN

Laboratories, Boeing Computer Services, Cray Research Inc., Integrated Systems, Mitchell,

Gauthier & Associates, SlKOG Inc (LEVCO), Silicon Graphics, Systolic Systems, and 3-D Visions.

CLOSING SESSION

The closing session was designed to bring everyone back together after two days of parallel

sessions for two general interest papers followed by a panel discussion on future directions.

Full-Length Papers

The first speaker was Ed Haug of the University of Iowa, who described the concept of a

Verification Library for multibody simulation software. The idea of a verification library is to build

up a public domain library to store data for example problems. The intent is to facilitate the

comparison of test results and the results from different multibody simulation codes. The library

would contain model information, simulation results, test definition data, and processed test data.

Three flexible multibody codes are being compared at this time: DADS, DISCOS, and CONTOPS.

Fundamental differences between these codes include: DADS and DISCOS use absolute coordinates

where CONTOPS uses relative coordinates, DISCOS uses Euler angles to define joints while CONTOPS

and DADS use unit vectors. In DISCOS and CONTOPS, the user must specify a kinematicaUy

acceptable initial condition, while DADS will solve an optimization problem to provide the initial

condition based on estimates of the states. These differences make the job of designing a translator

between input data sets for these codes difficult. The complete paper discussing the above is in the

conference Proceedings

The next speaker was John Doyle of the California Institute of Technology. Doyle gave his view

of the history of control theory and its future directions. His main message was that for the "post-

modern" control era we should emphasize control as a strategy for dealing with uncertainty.

Panel Discussion

Guy K. Man moderated the panel discussion with the theme "future directions." The panel was

composed of government sponsors, users, software/hardware developers, and academicians. John

DiBattista of NASA Headquarters and Terry Hinnerichs of the Air Force Weapons Laboratory

represented government sponsors. Government and industry users of Computational Control tools

included: John Sunkel of NASA Johnson Space Center, Loren Slafer of Hughes Aircraft, and John

Breakwell of Lockheed Missiles and Space. Hardware and software developers were represented by



Jim Taylor of General Electric, Doug Petesch of Cray Research, and Dan Rosenthal of Symbolic

Dynamics. Academic participants included George Lee of Purdue University, Alan Laub of

University of California Santa Barbara, and John Doyle of the California Institute of Technology.

Guy K. Man started off the discussion by relating firsthand experience with existing tools

leading to the conclusion that they are too slow for use for spaceflight projects. He mentioned the

mission models currently being considered as computational control reference problems. Other

possibilities mentioned by panelists and attendees included Lunar/Mars initiative spacecraft, space

transportation systems, solar-electric propulsion, solar sail, national aerospace plane, SDI directed

energy spacecraft, and tether systems.

George Lee mentioned a related program in flight controls sponsored by the Wright Patterson

Research Center. He had two key messages based on their experiences: use the best quality low

level numerics package you can find, and when considering user friendliness, think of the expert

user as well as the novice.

Alan Laub stressed that current state-of-the-art numerical analysis software such as EISPACK and

LINPACK were only possible due to stable long-term funding, and that year-to-year funding tends to

lead to the taking of shortcuts.

The issue of the interaction between the control engineer and the computer scientist in

computational control was raised. Amir Fijany raised the issue of the importance for the controls

and dynamics specialist to know the power of parallel processing. Similarly, Dan Rosenthal related

from his experience the value of bringing in the talents of computer scientists at an early point. The

flow of tool requirements from control engineers to computer scientists was discussed, and

additional comments stressed the feedback from the computer scientists back to the control

engineers.

John Doyle sees a set of core control routines----comparable to computing eigenvalues of a

matrix--that are essential to being able to solve the types of problems that we talk about, and need a

lot of work for actual implementation. He also finds that MATLAB-type packages, while good for

linear algebra, have completely inadequate data types for control.

The issue of the lack of standardization in interfaces between packages was raised. This is an

issue that many groups are concerned about. Jim Taylor mentioned that the International Federation

of Automatic Control (IFAC) has a working group studying standardization of data structures. Terry

Hinnerichs referred to a Russell's paper at this conference describing a AF'WL sponsored effort tying

together structural dynamics, controls, thermal and optics codes. This development is the Integrated

Structural Modeling (ISM) program, which is to go into beta testing in 1990.
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DougPeteschsuggestedthat users explore supercomputing capabilities before presuming that the

solution required parallel processing. He also mentioned the advantage that comes from doing

software development as well as production runs on the supercomputer. The value of a hypothetical

teraflop machine was discussed. It was agreed that while valuable, it would not solve all the

problems--such as numerical difficulties with higher order systems. In addition some thought that

the same speed could be achieved at a much lower cost using parallel processing.

Dick Vandervoort of DYNAC referred back to John Doyle's comments about uncertainty, noting

that multibody dynamics modeling gives highly detailed models---more detailed than the control

designer needs or wants. In fact most of it is uncertainty, and what we need is a way to model that

uncertainty in a way that can be used in the control design

Perhaps John Hedgepeth's comment best summed up the reason to move forward with

Computational Control. Summarizing the comments of several speakers, he noted that we are

proceeding ahead conservatively in control system design for planned missions, and that without

improvements in technology--we are choosing to design only spacecraft that we already know how

to design.
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Introduction

A survey of multibody simulation codes was conducted in the spring of 1988, to obtain an

assessment of the state of the art in multibody simulation codes from the users of the codes.

This information will be used to evaluate the need to develop future codes. If this need is

established, it will also be used to guide the development of future capabilities. A questionnaire,

covering 30 issues, was developed for this purpose. Sixty questionnaires were sent out to 50

organizations. We received 40 replies from 30 organizations covering 21 simulation codes.

This survey covers the most often used articulated multibody simulation codes in the

spacecraft and robotics community. There was no attempt to perform a complete survey of all

available multibody codes in all disciplines. Furthermore, this is not an exhaustive evaluation

of even robotics and spacecraft multibody simulation codes, as the survey was designed to

capture feedback on issues most important to the users of simulation codes. We must keep in

mind that the information received was limited and the technical background of the respondent

varied greatly. Therefore, this paper only reports the most often cited observations from the

questionnaire. In this survey, it was found that no one code had both many users (reports)
and no limitations.

The paper is organized as follows. The next section is a report on multibody code applica-

tions. Following applications is a discussion of execution time, which is the most troublesome

issue for flexible multibody codes. The representation of component flexible bodies, which

affects both simulation setup time as well as execution time, is presented next. Following com-

ponent data preparation, two sections address the accessibility or usability of a code, evaluated

by considering its user interface design and examining the overall simulation integrated envi-

ronment. A summary of user efforts at code verification is reported, before a tabular summary

of the questionnaire responses. Finally, some conclusions are drawn.

Applications

It is not surprising that general purpose multibody simulation codes are used to address

spacecraft and robotics with articulated elements, because of the complexity of the equations
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of motion. Some codes are equipped to simulate ground vehicles or aircraft. The actual

applications include control design and verification, deployment simulation, machine design,

impact simulation, tether simulation, explosion simulation, and human in-the-loop real time

simulators for the Space Shuttle and Space Station. About 70% of the users reported that

multibody codes are used for control system design and verification. The remaining 30% apply

multibody codes for system design and dynamics studies. It is also reported that multibody

codes are used to check other codes. For example, a rigid body code might be used to check a

more complex flexible multibody code.

System order exercised varies from a robot arm with less than 10 states to a Space Station

model with 150 states. One user reported trying a model with over two hundred states with

modes up to 1000 Hz using DISCOS. Flexible body systems usually are higher order systems

than rigid body systems, and the simulation duration is usually shorter. Simulation duration

does however vary according to the application.

Execution Time

Excessive execution time is one of the two most cited shortcomings of current multibody

codes. This concern applies especially to flexible multibody simulations. Existing codes are so

slow for most problems that it is impossible to use them during the design phase when quick

turnaround is needed. Highly simplified flexible models or even rigid body models must suffice,

even though the control system designer fully recognizes that the result may be inaccurate.

For example, consider a 20 degree of freedom flexible system with flexible modes less than 100

Hz. The CPU time to real time ratio for this example is 200/1 on a VAX class computer.

As the system order becomes higher, the computational load will become much more stressing

because the computational load scales as N s, for the current codes, where N is the number of

degrees of freedom.

It is interesting to note from the survey that the simulation durations for flexible body

problems are usually short (seconds). Very few users are using flexible codes for long runs.

From the data, simulation duration is seen to be inversely proportional to the system order.

This telltale observation indicates that flexible multibody simulation codes are not being used

extensively, because long duration simulation costs are too high. One of the respondents

summarizes this quite well - "Multibody run times are seldom acceptable. You either pay the

price or get approximate answers."

Getting an approximate answer is the only way to reduce excessive execution time for given

hardware and software. Approximation of flexible multibody systems is done most commonly

by reducing the order of the individual flexible body dynamics, in fact often reducing the bodies

down to rigid bodies. More than one user reported that fast rigid body simulations were used

to check the more complex flexible body simulations. If appropriate, the more complex flexible

body simulation is abandoned in favor of the faster rigid body code. The model reduction

approach has not been included in this survey. But some observations of this method are

discussed in the next section.
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Component Model Representation

One of the major concernsin modeling a flexible multibody system is how to obtain data
for the component elastic bodies. Among the flexible multibody codessurveyed, all except
one code use the modal representation for flexible bodies. The primary benefit of using a
modal representation is "simplicity," which can lead to reducedcomputation time. There are
a variety of modesone can useto representthe individual bodiesof a multibody system,such
as Hurty modes (Craig Bampton modes)or cantilever modes. The modes of eachbody have
to be supplied to the multibody codewhich will then synthesizethe modesof the component
bodies to arrive at a system model for time simulation.

The body of knowledge of choosing the best component mode set for system synthesis

is called component mode synthesis. This includes both choosing the type of modes to use

(possibly several) as well picking out which of the modes must be retained for simulation

fidelity. The various component mode sets were developed for this purpose, however they were

developed for systems with no articulating components, essentially static system geometry.

Flexible multibody codes, on the other hand, were developed to model dynamical systems with

varying geometry. The applicability of component mode synthesis results to multibody analysis

is not well understood and care must be taken in each specific case to ensure that the results

are correct. One question that needs to be asked often is whether or not a set of component

body modes is complete over the range of interest of the articulation angles (or translations).

After the system is synthesized in the multibody code, a check can be made against a higher

fidelity linear model such as a NASTRAN system model only for a fixed geometry.

It was pointed out in the previous section that model reduction is one of the commonly used

methods to obtain an approximate solution. This is a necessary step for obtaining a reasonable

simulation computational time. A variety of methods exist to pick out the significant modes.

These arose out of the the slightly different model reduction problems of control theory. What

model reduction criterion should one use to obtain an adequate approximate multibody model?

No definitive answer exists, but the answer certainly depends on how the simulation is to be

used. For example, if the simulation is to be used for control system design, then controllability

and observability criteria may play a part. It may also be useful to consider the control design

problem simultaneously with the model reduction problem. In some multibody codes the level

of modal approximation used (for example the DISCOS mass distribution options) ties directly

into the flexibility data preparation process, compounding the data preparation problem.

Considering these issues, it is not surprising that the survey indicates flexible data require-

ments are obscure, challenging, poorly treated and inadequate. Considerable research remains

to be done in component model representation.

User Interface

One of the most common complaints concerning current multibody simulation codes is

the lack of interactive model setup capability. Codes that have a friendly input format win

praise from the users. Interactive, menu driven type preprocessors with good error messages are
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indicated ashighly desirable. Incompletedocumentation of the codewas the secondmost cited
complaint. Sophisticated usersalso desirewell commentedsource code, especially if the user
manual is inadequate. Online manualsand documentation were mentioned by severalusersas
highly desirable. For flexible multibody codes,the availability of the theoretical backgroundon
which the codeis basedis very important. In addition to documentation, application examples
are found to be an effectiveway to train users. It wasalso indicated that examplesare needed
for modal data preparation.

At the output interface, data retrieval flexibility and graphics seemedto be most impor-
tant. Userswere divided on whether they wanted built-in plotting capabilities or whether they
simply wanted the ability to export data to their own favorite plotting programs. The survey
did not indicate any major concernsin this area.

Integrated Environment

Multibody codes are sometimes used as stand alone tools but more recently complex
flexible multibody codesareoftenusedin conjunction with other softwaresuchasfinite element,
control analysis, or optics codes. In the latter environment, the multibody code becomes
a fundamental building block of an integrated design and analysis environment. Some of
the codessurveyed, such as TREETOPS, are actually a microcosm of such an environment.
This is a natural developmenttrend, becausemultibody systems are becomingmore complex,
forcing system engineering work to becomemultidisciplinary. The survey pointed out that
no environment can satisfy everybody. Every organization has its own culture and emphasis.
Everybody hassomepet code. It is thereforeperhapswiseto treat multibody codesasmodular
building blockswhich canbeeasily integrated into a biggerenvironment. If this is the approach
we adopt, then there is a needto definea standard interface for data passage.

There are a number of additional capabilities that users found helpful beyond the gen-

eration and integration of equations of motion. These are: a library of joints sensors and

actuators, the ability to obtain constraint forces, transfer functions, Jacobians, and key state

matrices for external control analysis, the ability to incorporate user defined subroutines, and

of course a model reduction preprocessor.

Verification

A number of codes have been independently checked by users with other codes. Most

users utilize simple test cases and the principles of mechanics to check simulation results. Of

the test cases reported, none are designed to check flexible body effects. This is not surprising,

because if component model data generation is not well understood, the verification of the

model must also be nontrivial. More work should be done in this area so as to add confidence

in the simulation results and the flexible multibody codes.

It is suggested that a set of standard test cases be collected, which can be used by the

community to check both existing and new simulations codes. The set should include simple

test cases with known simulation results as well as actual experiments with test data. This
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collection process has been started by NASA and the University of Iowa.

Tabulated Data

The user questionnaire data has been summarized in the following tables. Table I gives the

availability of the multibody code, as well as how many respondents used each code and how

extensive the information provided by the users was. Almost all of the software is available,

either commercially or in the public domain (COSMIC).

Table 2 gives various details of how users used the codes, and what code features they

liked or felt needed improvement. Typical applications and whether or not the run times were

acceptably fast are given, as well as what component data the code required and, in general,

how easy the code was to use. User comments are included on the quality of the documentation

as well as what features of the code they liked, and what features could be added to improve

productivity. Following are some comments on the individual columns.

There was a wide range in documentation quality, from "clear and precise" to "inadequate

overall," which in general indicates how much care the developer took with making the code
easy to use.

There was very little overlap from code to code of features that the users appreciated.

Some users liked the user interface of some codes, while one code was notable for animation,

and another for being database driven. Two features that did show up more than twice were

the ability to add user-defined subroutines, and a library of application modules.

There was also a wide variety of additional features that the users desired, again with

surprisingly few common needs from code to code. Significant needs included better documen-

tation (mentioned for four codes), and a better data interface capability (also mentioned for

four different codes).

The acceptability of the simulation run times was much more uniform. The rigid body

codes were all considered acceptably fast, while the flexible body codes were, in general, ac-

ceptable only for small problems.

There was considerable variety in the user comments on the type of data needed for the

representation of flexiblecomponents, indicating the lack of maturity of thisarea.

It is important to keep in mind that some multibody codes have been around for a long

time and so have an extensive user and applications base, while other codes are new and have

only been used by relatively few people on a small number of examples.

Conclusions

Examining the reports of existing multibody code users, three facts become evident:
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1. It is difficult to use flexible multibody codes in design and analysis due to the long execution

times for realistic problems,

2. Representation of component flexible bodies is poorly understood, and

3. Not enough thought has been given to the user interface by the code developers.

At the Workshop on Multibody Simulation in 1988, JPL made a commitment to coordinate

a multibody code verification, as part of an ongoing effort of the whole multibody simulation

community. This survey report, as well as the verification library begun jointly with the

University of Iowa, represent the first steps toward meeting that commitment.
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TABLE 1 MULTIBODY SIMULATION CODES INCLUDED IN THE SURVEY

Code

ADAMS

ALLFLEX

AUTOLEV

CONTOPS

DADS

Contact

Rajiv Rampali
MDI Inc.

3055 Plymouth Rd.

Ann Arbor, MI 48105

Jimmy Ho

Lockheed Missiles & Space Co.
Space System Division

1111 Lockheed Way
Sunnyvale, CA

David Levinson

93-30/250

Lockheed Palo Alto Research Lab

3251 Hanover Street

Palo Alto, CA 94304

John Sharkey
NASA MSFC

Code ED 12

Marshall Space Flight Center
Alabama 35812

CADSI, Inc
PO. Box 203

Oakdale, IA 52319

# of

Replys

Information

Received

extensive

moderate

moderate

extensive

extensive

Availability

yes, commercial

yes

yes, commercial

yes, COSMIC

yes, commercial

Host

Computer

• Cray
• NEC

• IBM

• Alliant

• Convex

• DEC

• Prime

• Cyber
• SGI

• HP

• Sun

• Apollo

• Intergraph

• CRAY
• VAX

IBM PC/CLONE

• VAX 11/750

• MICRO VAX

• HP 9000

• VAX • Multiflow

• Alliant • Prime

• Apollo • Silicon Graphicsi

• Cray * IBM PC

• DEC • Computervision

i" IBM • Cyber
Io Sun • HP



Code

DAMS

DISCOS

DYNOCOMBS

DYNA/EF3

DYNAMUS

Contact

A.A. Shabana
P.O. Box 4348

DepL of ME

U of Illinois @ Chicago
Chicago, IL 60680

CC_SMC
U. of Georgia
Computer ServiceAnnex
382 E. Broad Street
Athens, GA 30602

Ron Huston
U of Cincinatti

Dept. of ME & mE
Cincinatti, OH 45221-0072

Jim Lawrence
NASA JSC
Mail Code EF3
Houston, TX 77058

Information
Received

limited

extensive

moderate

moderate

Availability

yes

yes, COSMIC

Host

Computer

IBM

• IBM 3090, 770

yes
• IBM 37O

• VAX 11/780

Farid Amirouche

DepL of ME
P.O. Box 4348

U of Illinois@ Chicago
Chicago, IL 60680

# of

Replys

extensive

yes

yes

Gould Concept 32

• IBM 4O43

• VAX 1170

• VAX 11/780, 750

• MICRO VAX
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Code

MULTFLEX

NBOD2

SD/EXACT

SPASIS

Station Control

Simulation

TREETOPS

Contact

Martin Tong
The Aerospace Corp.

MS (M4/972)
P.O. Box 92957

Los Angeles, CA 90009-2957

COSMIC
University of Georgia

Computer Services Annex
382 E. Broad Street

Athens, GA 30602

Dan Rosenthal

11585 Silvergate Drive
Dublin, CA 94568

COSMIC

University of Georgia
Computer Service Annex
382 E. Broad Street

Athens, GA 30602

John W. Sunkel

NASA JSC
Mail Code EH2

Houston, TX 77058

John Sharkey
NASA MSFC

Code ED 12

Marshall Space Flight Center
Alabama 36812

# of

Replys
Information
Received

moderate

limited

extensive

moderate

limited

moderate

Availability

proprietary

yes, COSMIC

yes, commercial

y_,COSMIC

yes

y_,COSMIC

Host

Computer

• CDC Cyber 175

• Cray X-MP

VAX 11/785

• VAX 11/785
• IBM 3090
• VAX Station II

• Sun Workstation
• HP-9000

• MICRO VAX

• VAX 8650
• Harris-800

CYBER 830

VAX
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4800 Oak Grove Drive, MS 198-219, Pasadena, CA 91109

Abstract: This paper describes the Spatial Operator Algebra framework for the dynamics of general

multibody systems. The use of a spatial operator-based methodology permits the formulation of the dy-

namical equations of motion of multibody systems in a concise and systematic way. The dynamical equations

of progressively more complex rigid multibody systems are developed in an evolutionary manner beginning

with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed
loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward
dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.

1 Introduction

The field of multibody dynamics is currently being challenged in two major ways. The increase in tile size and

complexity of spacecraft systems requires the development of tools that not only help manage the complexity
of such systems, but also facilitate the development of novel dynamics formulation techniques and solution

algorithms. Areas such as robotics involve multibody systems consisting of multiple robot manipulators

interacting with each other and with complex environments. These are multibody systems with not only
constantly time-varying topological structure, but also ones in which the constituent bodies change with
time. Coping with this aspect requires versatile and flexible dynamics simulation tools.

In this paper, the Spatial Operator Algebra Framework [1] is used to develop a systematic l)rocedure

for concisely formulating the equations of motion and derive spatially recursive forward dynamics algorithms

for multibody systems. The equations of motion of progressively more complex rigid multibody systems such

as serial chains, tree topology systems and finally closed chain systems are developed. Operator factorizations

and identities are then used to obtain efficient spatially recursive algorithms for the forward dynamics of
such systems. Extensions to handle flexible link elements are also discussed.

2 Equations of Motion

We begin by briefly describing the coordinate-free spatial notation used throughout this paper. Given the

linear and angular velocities v and w, the linear force F, and moment N at a point on a body, the spatial
velocity V, spatial acceleration a and the spatial force f in 7-d6 are defined as follows:

v ' _=f" /= F

The rigid body transformation operator 4_(.) E 7_6×6 is defined as:

¢(l) ZX (I0 I1)
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where1 is a vector joining two points, and l" is the cross-product matrix associated with 1 which acts on a

vector to produce the cross-product of I with the vector. ¢(/) and ¢°(/) transform spatial forces and spatial

velocities respectively between two points on a rigid body seperated by the vector 1. For a rigid body, its

spatial inertias Me and Mo at its center of mass C and at another point 0 respectively, are defined as

= 0 mI , and M(O) a_ ¢(p)M(C)¢*(p) = -m_ mI

where p is the vector from O to C, m is the mass of the body, and if(C) and ,7(0) are the inertia tensors
for the body about C and O respectively. The reader is referred to [2] for additional discussion on the use
of spatial notation.

2.1 Dynamics of a Serial Rigid Multibody System

Serial rigid multibody systerr_s form basic subsystems from which the dynamics of more general rigid multi-

body systems can be generated. In this section we derive the equations of motion of a serial multibody system

consisting of n rigid links connected together by multiple dof joints. The links are numbered 1 through n

from tip to base. We use the terms outboard (inboard) link to refer to a link on the path towards the tip
(base).

The set of configuration variables for the serial chain are the collection of tile joint configuration
parameters. It is assumed that the k th joint possesses rp(k) positional dofs parameterized by the vector of

configuration variables O(k) (of dimension at least rv(k)) , and that its rv(k) motion dofs are parameterized

by the r_(k) dimensional joint velocity vector fl(k). The kinematical equations which relate 0(k) to fl(k)
depend on the specific nature of the k th joint. It is assumed for notational convenience that all the joint

constraints are homogeneous (i.e., catastatic). H(k) is defined such that H*(k) is the 6 x %(k) joint map
matrix for the k th joint whose columns span the space of permissible relative spatial velocities Av (k) across

the joint. The complexity of the dynamics algorithms for the serial chain is determined by the number of
n

overall motion dofs A/" a= _k=l r_(k) for the chain. The state of the multibody system is defined by the

collection of [0(.), fl(.)] for all the joints, and is assumed known.

Since each link is rigid, it suffices to develop the equations of motion at a single reference point

on each link, which is taken to be the inboard joint location Ok for the k th link. With V(k) denoting the
spatial velocity, c_(k) the spatial acceleration, f(k) the spatial force and T(k) the joint force at Ok for the

k th link, the following Newton -Euler recursive equations describe the equations of motion for the serial rigid
multibody chain:

V(n+l)=O, a(n+l)=O

fork = n..-1

V(k) = ¢*(k+ 1,k)V(k + 1) + n'(k)fl(k)

a(k) = ¢*(k + 1,k)a(k + 1) +H*(k_3(k) + a(k)

end loop

f(O) = 0

fork = l...n

f(k) -- ¢(k+l,k)f(k-1)+M(k)a(k)+b(k)

T(k) = H(k)f(k)
end loop

(2.1)

a(k) and b(k) are the velocity dependent Coriolis acceleration and gyroscopic forces repectively for the

k th link at Ok • ¢(k, k - 1) denotes the transformation operator from O_-i to Ok . For additional details

regarding the derivation.of thee equations of motion, see [1]. We have made the simplifying assumption
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that thetip forcef(0) is zero. Attaching a full 6 motion dof joint between the physical base and the inertial
frame allows us to easily deal with the mobile base situation. For the inverse dynamics problem, the joint

accelerations/_ are known, and Eq. (2.1) represents an O(A f) computational process involving a base-to-tip

recursion to compute the velocities and accelerations, followed by a tip-to-base recursion to compute the

joint forces•

In order to express the equations of motion given by Eq. (2•1) ill a more compact form, we define

the stacked notation. In this notation, the V(k)'s, a(k)'s etc are viewed as components of vectors V, a etc.

Then Eq. (2.1) can be written in the following compact form:

V = E;V+H*/3

= H'3+ a
f = Ccf+Ma+b (2.2)

where,

C¢

H

A

0 0 0 0 O_

¢(2, 1) 0 ... 0 0 J0 ¢(3, 2) ... 0 0 ,
• • ••. " .

0 0 ... ¢(n,n-1) 0

H(1) 0 ... 0 '_
0 U(2) ... O J• , .. '

0 0 ... H(n)

However, since £¢ is nilpotent ( _'$ = 0),

M(1) 0 ... 0 )

M _ 0 M(2) ... 0

0 0 ... M(n)

I 0 ... O)

¢(2, 1) I ... 0
¢ _ (I_£,)-x _- I-I-£,+£_+ ... +E_-x_ - ....

¢(,,1) ¢(,,,2)... i

(2.3)

(2.4)

where,

¢(i,j) _ ¢(i,i- 1) -.- ¢(j+ 1,j)

Thus Eq. (2.2) can be reexpressed in the form,

V = ¢*H*fl

= ¢'(H'3 + a) (2.s)
f = ¢(Ma +b) = ¢M¢*H*/_ +¢(M_b*a + b)

T = Hf= HCM¢*H*fl+H¢(M¢*a+b)

= .M/_+C, where .A/I_=HCMqb*H *, and Czx11¢(M¢*a+b)

3,4 E "RAcxAr is the mass mafriz for the serial chain and C E _X consists of the velocity dependent CoriolLs,

centrifugal and gyroscopic joint forces. In the terminology of Kane's method [3],/3 are the generalized speeds

and the elements of ¢*H* are the partial (spatial) velocities.

,g_,, ¢, H, and M are the first of the spatial operators that will be encountered. Recursive dynamical

algorithms can be derived naturally by exploiting the special state transition properties [1] of the elements of

spatial operators such as o¢÷,_betc.. For instance, given a vector y, the evaluation of the matrix-vector product

¢y does not require an O(n 2) matrix-vector product computation, and not even the explicit computation
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of theelementsof ¢, but rather,it canbeevaluatedusinganO(n) recursive algorithm involving only the

elements of £_ and y. This is precisely the correspondence between the concise operator based high-level
description of the equations of motion in Eq. (2.5) and the recursive algorithmic description in Eq. (2.1).

Spatially recursive O(A f) forward dynamics algorithms for serial chains have been developed in

[4] based on the recognition of the isomorphism between the structure of the dynamics equations and the

equations encountered in Kalman Filtering theory. These insights have formed the basis for the development

of the Spatial Operator Algebra Framework for multibody dynamics.

2.2 Tree Topology Systems

In this section, the dynamics of rigid multibody systems with tree topological structure are discussed. A

tree topology system may be viewed as a set of component serial chains (referred to as branches) coupled

together via joints at their terminal links. The total number of branches is denoted L The index for the
branches thus ranges from 1 ..- /_, and consistent with the link numbering scheme in the previous section,

the inboard branches are assigned indices larger than those for the outboard ones. The connectivity function

z(k) is defined as the index of the direct predecessor branch, i.e., the inboard branch to which the k th branch
is connected. The jth branch is simply denoted a predecessor branch for the k th branch if it belongs on the

unique path from the k th branch to the base, i.e., if zP(k) = j for some integer p > 0. The joint coupling two
branches is assigned to the outboard branch. Figure I illustrates the link/branch numbering convention for

tree topology systems.

The notation for serial chains from Section 2.1 is carried over to describe the branches in the tree

structure, and an additional subscript is used to identify the specific branch in the system. Thus nj and A/'j
denote the number of links and the number of motion dofs respectively, while _, Mj, C¢j, Cj etc. denote

the appropriate spatial velocity etc. quantities for the jth branch. A link/joint is identified by the index
of the branch it is on, plus its location within the branch. For instance, V(kj) (or more accurately Vj(k))

denotes the spatial velocity of the the k th link of the jth branch at its inboard joint location O(kj). The

overall stacked spatial velocity, acceleration etc. vectors for the tree are now denoted V, a, f etc. with

V _ [Vt* "'" Vt*]* etc.. The total number of links n, and the total number of motion dofs Af for the system

are given by
l l

n_= ZnJ and .A{_ Z_ (2.6)
j=l j=l

Note that when the jth branch is the direct predecessor of the k th branch, i.e., j = 1.(k), the joint connecting

them is the n_h joint on the k th branch and is located on link 1i on the jth branch. The transformation

operator from the n_h joint to the 1_h joint is denoted ¢(lj, n_). The spatial operator £_ is now defined in
terms of its block matrix elements below. For j, k E 1 • • • _,

E_j

0 --.

. . .

£#(j, k) = .

. . .

0

for j=k

0 ¢(1_, n_)
0 0 J:

0 0

for j = :(k), i.e. if j is the direct predecessor branch of k

for j # t(k), i.e. if j is not the direct predecessor of k
(2.7)

0 denotes a zero matrix of dimension appropriate for the context. As a consequence of the numbering scheme

used here, for j < k, the jth branch cannot be a predecessor to the k th branch and thus the (j, k) th block



element,£#(j,k) = 0. Thus t?¢ is a strictly lower triangular matrix. The analogs of Eq. (2.2) are as follows:

V = _;V+H*13

=
f = Ecf + Ma+b (2.8)

Once again (analogous to Eq. (2.4)), £¢ is nilpotent (g_ = 0), and so

_b _-_ (I__ _¢)--1 : i..t__b.lt__.. _ .....__ _--1 (2.9)

The block structure of ¢ is described below:

Cj for j = k
¢(j, k) = {¢(mj,/k)}m.t if 3 p > 0 : j = zP(k), i.e., if j is a predecessor branch of k (2.10)

0 if j # zP(k) Vp > 0, i.e., ifj is not a predecessor branch of k

Here {¢(mj,lk)}rn,t denotes a block matrix whose (re, l) th entry is given by ¢(mj,lk) with m E 1...nj and

l ¢ 1-..nk. ¢(mj,l_) is the transformation operator from joint lk (on the k th branch) to joint rnj (on the
jth branch) and is a generalization of the transformation operator ¢(i,j) in Eq. (2.4) for serial chains. It

is formed by sequentially composing all the individual transformation operators that lie on the unique path

joining the two joints. The numbering scheme used here ensures that ¢ will be a lower triangular matrix.
Tile operator ¢ has state transition properties analogous to the ¢ for serial chains, and as a consequence, it

carl be used for high-level and concise description of the dynamics of tree topology systems (as in Eq. (2.11)
below), but with the full understanding that from the computational perspective, these equations directly

map into recursive implementation procedures. From Eq. (2.8) and Eq. (2.4) it follows that,

Y = ¢'H*/3

a = ¢*(H*/}+a) (2.11)

f = ¢(M_ + b) = ¢M¢*H*/}+ ¢(M¢*a+ b)

T = Hf = HfMC*H*/}+ H_b(MC*a+ b)

= .M/}+C, where Ad _ HCM¢*H*, and C _- H¢(M¢*a + b)

A/[ E 7_Xx'¢ denotes the mass matrix for the tree system. 5b _ T - C can be easily computed from the

knowledge of the system state, and so the equations of motion for the system can be rewritten in the form

.A/f/} = ¢ (2.12)

The forward dynamics problem requires then the solution of the joint accelerations/} for a given set of joint

forces T. The mass matrix for the system is typically not available and potentially needs to be computed to

solve the forward dynamics problem. However, in Section 3, a recursive O(A/') forward dynamics algorithm
for tree topology systems, which does not require the explicit computation of the mass matrix ._¢f, is derived.

Before proceeding on to closed topology systems, we first derive the structure of the Jacobian

operator. Given nc points, denoted C't 's, on the tree (seeFigure 1), the Jacobian operator d E -_6ncx2q"

defines the mapping between/3 and V, i.e., I_ = J/3, where V E T_6nc denotes the vector of spatial velocities

at these points. If Ck is on link mj, then the spatial velocity at Ck is given by

V(k) = ¢*(O(mj), Ck)V(mj)

with ¢(O(mj), C_) denoting the rigid body transformation operator from Ck to the point O(mj). With the
block elements of B E 7_6nx6nc defined as

_h link

¢(O(mj),Ck) ifC_ E mj
B(m , k) =

0 • otherwise
fork = 1...nc (2.13)
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it follows that
(/= B*V = B*dfH'fl, i.e., J = B*¢*H* (2.14)

This gives us an expression for the desired Jacobian operator which will be used below when dealing with

loop closure constraints for closed topology systems.

2.3 Closed Topology Systems

This paper develops a systematic procedure for the formulation of the equations of motion and derivation of

forward dynamics solution algorithms for general topology multibody systems with time-varying topologies

as well as changing constituent bodies. Based on the specific application, such systems may be conceptually

partitioned as follows:

(a) The primary system consisting of the least time-variant part, i.e., the multibody subsystem with fixed

topology and constituent bodies.

(b) The secondary system consisting of the muitibody subsystem which may change from time to time.

(c) The set of closure constraints and/or boundary conditions between/within the primary and secondary
systems which change with changes in the system topology.

Note the the subsystems described above are in the order of increasing time-variation. As an example, let

us examine the robotics scenario of multiple manipulators interacting with each other and the environment

to perform complex tasks. In this context, the manipulators belong to the primary system since their innate

structure varies very little with time. The task objects vary from task to task and form the secondary

system. The constraints between these two subsystems change during the execution of a task, such as

grasping, mating, tool operation etc., and belong to the last category.

This partitioning allows us to derive a very general and yet systematic procedure for the development

of dynamics algorithms which are responsive and adaptable to time-varying systems. The procedure involves
a sequence of decoupled steps for each of the primary and secondary system dynamics, and one step in which

they come together when the constraint forces are computed. Being structurally time-invariant, it is possible

to put in place optimized algorithms for the dynamics of the primary system. The time-variant secondary

system is typically of small complexity and thus the use of standard, though suboptimal, algorithms does

not substantively degrade performance.

This decomposition of the closed topology system is a departure from the more traditional approach

(see [5, 6]) of forming a spanning tree for the full system and computing the constraint forces at the points
of closure. In these latter approaches, even small changes in the original system typically lead to whole new

spanning trees for the system. This disallows any algorithmic optimization, and the algorithms are also not

very amenable to coping with time-varying systems.

The primary and secondary systems in most applications have tree topological structure. However

in general there may be internal closed loops within either system. In any case, by cutting an appropriate
number of joints, each subsystem may be regarded as a tree topology system with additional kinematical

constraints at the internal loop closure points. The equations of motion for tree topology systems derived in

Eq. (2.12) will be used to describe the dynamics of the tree components of both the primary and secondary

systems, with the subscripts "P" and "S" differentiating the two subsystems. Thus the dynamics of the tree

part of the two systems are described by

Tp = HpepMp¢*pH_,3p = A/Ipflp, and Ts = HsesMs¢*sH;[3s = ]k4sfls (2.15)

MR and .Ms denote the mass matrices, fir and fls the motion dof parameter vectors, 7_p and Ts the

bias free internal joint forces for the primary and secondary subsystems respectively.
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Combiningtheinternallooppointsofclosurewiththepointsofclosurecouplingthetwosystems,we
obtaintheoverallpointsofclosureforeachofthesubsystems.LetVp and Vs denote the spatial velocities

at these overall points of closure for the two systems, and following the discussion leading to Eq. (2.14), let

JR ---- B_¢*pH_, and Js = B*s¢*sH_. denote the Jacobian operators for the two systems corresponding to
these points. Thus (/p = Jpflp and Vs = Js_s. The kinematical constraints due to the existence of internal

closed loops within the primary and secondary systems leads to constraint equations of the form:

Qp p = Op and Qs s = Os

The coupling together of the primary and secondary systems via joints leeds to constraint equations of the

form:

Defining

Ap _ , As = , and A-lAP As]

Qs
the closure constraints can be collectively expressed in the form:

A(lTp) (Jp 0 )(tip) (tip)= _rp a=/) (2.16)_/S = [Ap AS] 0 ds _s = [ApJp AsJs] [3s (Is

It is assumed that [Apdp AsJs] is of full row rank ArE. The overall number of motion dofs of the closed

chain system is given by A/'c _ A/" + AZs - iV'B, and if necessary, Eq. (2.16) can be used to find the A/'c
dimensional minimal set of motion generalized coordinates for system. Based on the principle of virtual

work, Eq. (2.16) implies that the closure constraint joint forces are of the form

J;A 

for some ] E _X_. This leads to the following overall equations of motion:

( MT_ 0 d_,A*p ) (_fi ) (_'P ) t, ( )
0 .Ads J;A* s = Ts , where V = 3 -[(AI_Jp) (AsJs)] Vp

Ap Jp As Js 0 U Vs

0 Ms J;A*s = :Fs

0 0 -[ApApA_ + AsAsA*s] U - [ApJp.Mp1Tp + AsJs.A4_lTs]

(2.17)

where

Ap _- Je./t4_,lJ_,, and As _ Js.A4slJ;

Note that Ap and As are the effective "admittances" of the primary and secondary systems reflected to the

points of closure. We now describe some special cases of the above setup:

• The joint constraints coupling the primary and secondary systems are typically on the relative spatial

velocity across the joints at the points of closure. When this is true for all joints, an appropriate

reordering of the elements of l_ will result in Qp = -Qs. Furthermore, if no relative motion is
permitted across the joint, i.e., there is rigid rather than loose coupling, then in fact Qp = I and

Qs = I. When this is the case for only some of the joints, only the corresponding rows have these

special features.

• If the secondary system has no internal actuators or source of generalized forces, then Ts = O.

• If the secondary system is a free rigid body with no internal degrees of freedom, then the motion

generalized coordinates vector/_s is of dimension 6 and consists of the 3 translational and 3 rotational

dof parameters.
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3 Forward Dynamics of Closed Chain Systems

In this section we discuss a recursive method for solving the forward dynamics of closed chain rigid multibody

systems. This method does not require the explicit computation of the primary and secondary tree system

mass matrices A/lp or Ms, but does require the computation of the constraint force parameters.

From the equations of motion of the closed chain system with dynamical closure constraints given

by Eq. (2.17), the solution of the forward dynamics problem call be solved by the following sequence of steps:

(A) Solve ._4p_ 1 : Tp for _/p Solve ._sflls= Ts for h/s

(B) Compute 5/p = Jphlp Compute 51 = JsYs

(C) Compute Ap = Jp./t4pIj_, Compute As = JsJ_;1J_

(D) Solve [ApApA*p + AsAsA*s] ] = (ApSIp 4-As&Is) - U for ]

(E) Solve Mph " *-=-JpApf for fl_, Solve A_s/}_ = * *"-JsAsl for

(r)

As a result of the partitioning, a changes in the closure constraints only effect A and thus only STEP

D, while changes in the secondary system effect only the steps ia the right half column. Recursive algorithms
for carrying out each of these steps are derived below. The proofs of the various lemmas are omitted due

to space limitations. However they follow precisely along the lines of the proofs for serial chains discussed

in [7]. The explicit use of the subscripts indentifying the primary/secondary system is dropped (except for

STEP (D)) since the discussion is equally applicable to either subsystem.

STEP (A) Solve 2vl/3! = 7". (Forward Dynamics of a Tree Topology System )

Note that Step (A) is equivalent to solving the forward dynamics of a tree topology system, and we

develop an O(.h/') recursive algorithm for this solution. This algorithm is based on a new factorization

of the mass matrix 2k4 in terms of square factors, which may be contrasted with the earlier non-square

factorization in Eq. (2.11). This square factorization is then used to obtain an explicit expression for
j_-l.

The articulated body inertia matrix P is defined as the solution to the following equation:

M = P - £,[P - PH*(HI'H*)-IHp]£; (3.x)

P is block diagonal and the elements on the diagonal (denoted P(kj)) can be obtained using a recursive

algorithm described in Eq. (A.1) in Appendix A. Physically, P(kj) is the articulated body inertia as

seen at the kJ h joint, i.e., it is the effective inertia of all the links outboard from the kJ h joint assuming
that the joint forces at all the outboard joints are zero.

For the subsequent development, it is convenient to define

D _= HPH', G _- PH*D -1, K _£¢G

tx _Ix
r = GH, r=I-r, £¢ _£_ (3.2)

Note that D, G, r and • are all block diagonal. The structure of £_ is identical to that of £_ with its

elements being given by
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£_ isalsonilpotent(£_= 0),andanalogousto _b,¢ isdefinedas

¢ _ (I_E¢)-I =i+g¢+£_+ ... +g_-I (3.3)

Thestructureof¢ isverysimilarto thatof_bandit alsopossessesthestatetransitionpropertieswhich
areusedto developrecursivealgorithms.¢maybeviewedasthetransformationoperatorforcomposite
bodies(i.e.,asif all thejointsarelocked),while¢ isthetransformationoperatorforarticulatedbodies
(i.e.,asif all thejoint forceswerezero).ThefollowinglemmayieldsasquarefactorizationofA4.

Lemma 1: The mass matrix .A4 has the following factorization:

.A4 = [I + HCK]D[I + HCKI*, (3.4) |

The following lemma gives the explicit form for the inverse of [I + HCK].

Lemma 2:

[I + HCK] -1 = [I- HCK] (3.5)

Combining Lemma 1 and Lemma 2 leads to the following form for the inverse of the mass matrix.

Lemma 3:

.hd -1 = [I - HCK]*D-'[I - HCK] (3.6) II

Thus,

The O(Af)

_! = ./td-':F= [I- HCK]*D-I[I - H¢K]7" (3.7)

recursivecomputation ofthe expressionon the rightisgiven in Eq. (A.2) in Appendix A.

STEP (B) Compute 51 = j_l

From Eq. (2.14), 51 = B*6 I, where

However we have that,

&1 _ ¢.H._1 (3.8)

Lemma 4:

(I - HCK)H4) = H¢ (3.9) II

Thus using Eq. (3.6) and the above lemma in Eq. (3.8),

dl= ¢'H*[I - HCK]*D-'[I - HCKIT = ¢*H*D-'[I - H¢I(17'

Comparing this with Eq. (3.7) we see that 61 can be evaluated as an intermediate quantity ill the

O(Af) recursive algorithm for computing ]}l described in STEP (A).

STEP (C) Compute A = J.hd-'J*

Using Eq. (2.14) and Eq. (3.6),

A = {[I- HCK]H¢B}*D-I{[I- HCK]H¢B}

= B*¢*H*D-1HCB=B*_B, where _ _= ¢*H*D-1H¢ (3.10)
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where Eq. (3.9) has been used to simplify the above expression. A recursive O(A/') procedure for the

computation of fl is given in Eq. (A.5) in Appendix A. Note that without the simplification resulting

from the use of Eq. (3.9), the computation of A would be an O(Af 3) process.

STEP (D) Solve [ApAA*p + AsAsA*s]]= (Ap&Ip + As& l )- U for ]

Now_

] = [ApAA*p + AsAsA*s]-l[(Ap&tp + As& l) - U] (3.11)

In this form this step is of O(.N'_) complexity. However, when (ApApA*p) is invertible, we can obtain

an alternative expression for ] by reexpressing Eq. (2.17) as follows:

( Mp 0 J_,A'p
0 Ms J_A's
0 AsJs -AphpA'p

and consequently,

)=

Me 0 J_,A*p
0 Ms + J_A*s(ApAA*p)-aAsJs 0

0 AsJs -ApApA_,

(
From the above equation it follows that

5s
]

Ts + J;A*s(ApApAp)-I[U - AP&Ip]

U - Apotlp

= • • • -1A --1 T[Ms + JsAs(ApApAp) sJs] [ s - J;A*s(ApAA*p)-I(ApSIp - U)]

= (ApAA*p)-I[(Ap&_ + AsJs3s) - U]

= (ApApA*p)-X[(Ap&tp + As&s)- U], where &s _= ds3s

Note the similarity between the forms of Eq. (3.11) and tile above equation for ]. The computational

cost of the above operation is a combination of the cost of inverting ApApA*p, and the O(AZ_) step of

solving a square linear system of equations of size A/'s. The cost of inverting ApApA*p depends on its

structure: its sparsity reflects the degree of coupling between the closed loops in the system. The cost

is typically much less than the worst case of O(Af3). In many application domains such as robotics,

ApApA*p is in fact block diagonal and is thus invertible in O(A/'E) steps [1]. In addition, for most

applications A/'s << JV'_, and this new formulation can lead to considerable computational savings.

The inverse of [ApApA*p + AshsA*s] will not exist if [ApJp AsJs] is not of full rank, i.e., the
configuration is such thai, the number of motion dofs for the system have changed. It is therefore

necessary to reformulate the constraint equation Eq. (2.16) so as to preserve the full rank property.

Such changes of rank can occur at kinematically singular configurations.

STEP (E) Compute/36 = -.A/I-1J'A *]

We have from Eq. (3.6) and Eq. (2.14) that

f16 = -[I - HeK]*D-I[I- HeK]HeBA']

Using Lemma 4 this simplifies to

136 = -[I- HeK]*D -I HeBA*]

The recursive O(.h/') implementation of the above step is given in Eq. (A.6) in Appendix A.

(3.12)
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Theoverallcomplexityofthisspatiallyrecursiveforwarddynamicsalgorithmranges between O(.V'+

As) + O(A fa) for the worst case and O(A f + ?is) + O(AfE) + O(A fa) in the best case.

By treating the primary and secondary system as one system, which amounts to defining the quan-

tities ¢ _ diag(¢p, Cs), H _= diag(Hp, Hs) etc., and using the above results, the overall closed topology

forward dynamics algorithm can be restated in the following form:

= [I- HCK]*D-½ [I- b(AAA*)-%*]D-][I- HCK]T, where b _= HCBA" (3.13)

Note that when there are no closed loops in the overall system, A = 0, and the middle term reduces to I,

and we recover the form for for the forward dynamics of tree topology systerrLs in Eq. (3.7).

4 Flexible Multibody Dynamics

In this section we briefly describe the extensions to handle the case of flexible links. We use the serial chain

discussed in Section 2.1 as an illustrative example, but now assume that the links in the chain are flexible.

It is assumed (without losing any generality) that finite element models are available for all the links, and
in particular, the k th link is characterized by: nk node points with the location of of the jth node denoted

• 'SQ_(3) , the vector of displacement variables u/_ E T_6"k, a free-free mass-matrix mk E _6,k ×G,*k, a stiffness

matrix Kk E _6nh×6nk. The ordering of the nodes is such that Qk(1) is on the same element as Ok-1 and

Qk(nk) is on the same element as O, . Treating the k th link as being pinned at Ok , this implies that

u_(nk) = 0, and thus the true flexible dofs are given by the vector uk = h_u: k, where h_[I, 0]. Note that
uk E TO.6(n_-D and hk E ,_6nkX6(n_.--1).

Thus,

With V(k) denoting the spatial velocity of the k th link at Ok ,

V(k) = ¢°(k + 1, k)V(k + 1) + H*(k)fl(k) + oh*(Q_+,(1),Ok)uk+x(1)

= dp'(k+l,k)V(k+l)+g'(k)fl(k)1-' r_._.k+xh.ukk+x

C_+, _ [¢*(Q,+x(1),O,), O, ...where O] E 7_6x6_

V = ¢*[H'fl + C'h*u]

with C defined as the block matrix with C2 to C, along its first block subdiagonal, and h is the block

diagonal matrix with jth block diagonal element being h i. Let VL 6 T_6nk denote the vector of spatial
velocities on the k _h link at the nk node points. Then

V1 = B_Y(k)+h_uk, where Bk _ [¢(Ok,Qk(1)),--',¢(Ok,Qk(nk))] 6 _6x6,_

::_ V ! = B'V+h'u=B'¢*[H*/3+C*h'u]+h*u=B'¢*H*/3+[I+B*¢*C*]h°u

= [I+ B*C*C*][h* B'H*IX, where X zx= ( /3u ) (4.3)

%

B denotes the block diagonal matrix with the B_'s along its diagonal. We have used the facts that,

BkCk=4(k,k-1) _ Be=g, _ Be0=0-1 _ B[/ + COB] = ¢9

Note that X is the'vector of motion dofs for the serial links and includes both the rigid and flexible dof

parameters•

Using Eq. (4.3), the kinetic energy for the whole chain is given by

T= I(VI)*mVI: 1X*.A.4IX, where .A41 _= ( HB )[I+CCB]m[I+ CCB]*( I1/3 )*
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sk41 is the mass matrix for the flexible serial chain. Given this factored form for the mass matrix, similar

techniques to those used for the rigid multibody case in the earlier sections result in alternate factorizations
and inversion of the mass matrix, and recursive forward dynamics algorithms. The reader is referred to [8]

for additional details. ,lust as for the rigid multibody case, the algorithms for flexible serial chains directly

extend to the flexible general topology multibody systems.

5 Conclusions

This paper describes the Spatial Operator Algebra Framework for the dynamics of general multibody systems.

Based on their rate of time-variation, the multibody system is partitioned into a primary subsystem, a

secondary subsystem and the set of closure constraints. This allows the development of forward dynamics

algorithms which are not only recursive and efficient, but also capable of easily coping with time varying

multibody systems. The solution procedure consists of a sequence of steps on parallel paths involving the

dynamics of the spanning trees for the primary and secondary systems. The two paths come together for

one step in order to compute the constraint forces. Using the spatial algebra techniques to develop novel
factorizations of the mass matrix and operator identities, efficient recursive algorithms for carrying out each

of these steps is developed. The overall algorithm does not require the computation of the mass matrix, and

its complexity is linear in the number of dofs for the tree systems. In addition, the impact on the complexity

of the algorithm, of the degree of coupling among the closed loops in the system topology is made clear,
and it is shown that the in the best circumstance, the algorithmic complexity is also linear in the number

of closure constraint equations. During the development, an O(sV') forward dynamics algorithm for tree

topology systems is also developed. For the sake of clarity, the focus of much of the paper was on multibody

systems with rigid links. However the extensions necessary to deal with flexible elements are discussed.
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A Appendix

Based on the special structure of ¢, ¢ etc., it is possible to evaluate many of the dynamical expressions
in a recursive manner and we describe some recursive algorithms in this appendix. First we define some

notational shorthand to simplify the description of the algorithms that follow:

x(nj + 1) _ z(1,(j))

 (ni + 1,nj) :=*

Y(lj'Oj)x(Oj) _ Z y(1/,nm)x(nm)

mo-*(i)

y(b,o_)_(oAy'(lj,OA _ _ Y(l_,nm)x('_,-)Y*(li,n,-)
mEs-t(j)

where y(.,.) and x(.) stand for some appropriate arrays. Thus wherever a term with indices as in the left

column appears, its meaning is actually given by the corresponding term in the column on the right. !pr

• A recursive method for the computation of the block diagonal elements of P as defined by Eq. (3.1)

and the entries of D, G, K, _% and _ defined in Eq. (3.2) are given by:

r

forj = 1--.l

fork =

D(k) = (A.1)
G(k) =
• (k) =

¢(k + 1, k) =
K(k + 1,k) =

end loop

end loop

• The recursive computation of fl! = [I - HCK]*D-I[I - H¢K]T in Eq. (3.7) in STEP (A) can be

carried out via the O(A f) tree topology forward dynamics algorithm described below. It also results in
the computation of &l = ¢*D-1[I- HCK]T required in STEP (B) as an intermediate quantity.

I

If,-_(j) = ¢, then P(Oj) = 0

lj... j
P(k) = ¢(k,k- 1)P(k- 1)¢'(k,k- 1) + M(k)

U(k)P(k)U*(k)

P(k)H'(k)D-l(k)

I - G(k)H(k)

¢(k + 1, k)'_(k)

¢(k + 1, IOG(k )

forj = 1...l

If t-l(j) = $, then z(Oj) = O,_b(Oj) = 0

for k = lj--.nj

z(k) = ¢(k,k-1)z(k-1)+K(k,k-1)_b(k-1)

,(k) = T(k)- H(k)z(k)

v(k) = D-'(k)e(k)

end loop

end loop

38



f _s (nt + 1) = 0
forj = l...1

for k = nj...lj
&l(k) = ¢'(k + 1,k)&l(k + 1) +H*(k)v(k)

hi(k) = v(k)- K*(k + 1)&/(k + 1)
end loop

end loop

(A.2)

• STEP (C) requires the computation of A = B*QB. In order to obtain a O(._) recursive scheme for

the computation of f2 we first define the matrix T as the one satisfying the equation:

H*D-'H = T -- oC_TC¢ (A.3)

T as defined above is a block diagonal matrix and its elements can be computed recursively. We now
obtain the following decomposition of Q.

Lemma 5:

f/= T +¢°T q- T¢ (A.4) It

Noting that ¢ is strictly lower triangular, we can then recognize that T as nothing but the diagonal
elements of f/. We now present a recursive scheme to compute the block diagonal elements of T and of
fL

I T(nt + I) = o
forj = _..-1

fork = nj.--lj

T(k) = ¢'(k + 1,k)T(k + 1)¢(k + 1, k) + H'(k)D-_(k)H(k)

{ n(k, k) = r(k)

form = k-1...lj

f2(k,m) = I2*(m,k)=r(k,m+l)¢(m+l,m)
end loop

end loop

end loop

The above recursion yields the elements 12j on the block diagonal of _. Since f2 is symmetric, the

off-diagonal elements satisfy f_j,t = f_j, and can be computed from the diagonal elements as follows.
f_td for ! E 1 -.. (j - 1) can be obtained via the following recursive scheme:

' if tP(I) =j for some p > 0

fork = nj-..lj

for m = nl..-11Q(k,m) = ft*(m,k) = n(k, lj)¢(l/,m)
end loop

end loop
else

_J,.' = f_Tj - 0
end if

(A.5)
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The O(AO

given below:

A _ BA'fDefine _ =

forj = 1...t

If ,-l(j) = O, then z(Oj) = 0,_(0_) = 0

fork = Xj.-.nj
z(k) = _(k,k-1)z(k-1)+ K(k,k-1)_(k-1)

_(t) = -H(k)z(t)
_(t) = D-_(t)_(t)

end loop

end loop

forj = l...1

fork = N.-.lj

_(k) = _'(k + 1,kl_(k + 1) + H'C_)_Ck)
fla(k) -- v(k) - K*(k + 1)a(k + 1)

end loop

end loop

recursive implementation of f16 = -[I - H_bK]'D-IH_bBA'f in Eq. (3.12) in Step (e) is

(A.6)

Figure 1: muswadon of link/branch numbering convention for muldbcdy _j_Jn
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Systems
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NASA Goddard Space Flight Center

Ab str act

The ability to simulate and analyze the dynamics of complicated

multibody systems has been of great benefit to engineers for the past

decade. Applications have included robotics, land vehicles, and spacecraft.

However, many of the commercially available software have been

computationally intensive and are costly and time-consuming for analyzing

large systems. Fortunately, recent developments in Order (n) algorithms

and parallel processing for multibody dynamics simulation have drastically

reduced the computer time needed to simulate systems involving many

bodies.

This paper presents the formulation of an Order (n) algorithm for

DISCOS (Dynamics Interaction Simulation of Controls and Structures), which

is an industry-standard software package for simulation and analysis of

flexible multibody systems. For systems involving many bodies, the new

Order (n) version of DISCOS is much faster than the current version. Results

of the experimental validation of the dynamics software are also presented.

The experiment is carried out on a seven-joint robot arm at NASA's

Goddard Space Flight Center.

The algorithm used in the current version of DISCOS requires the

inverse of a matrix whose dimension is equal to the number of constraints

in the system. Generally, the number of constraints in a system is roughly

proportional to the number of bodies in the system, and matrix inversion

requires O(p 3) operations, where p is the dimension of the matrix. The

current version of DISCOS is therefore considered an Order (n3) algorithm.

In contrast, the Order (n) algorithm requires inversion of matrices which

are small, and the number of matrices to be inverted increases only linearly

with the number of bodies.

The newly-developed Order (n) DISCOS is currently capable of handling

chain and tree topologies as well as multiple closed loops. Continuing

development will extend the capability of the software to deal with typical

robotics applications such as put-and-place, multi-arm hand-off and surface

sliding.
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Abstract

Multibody system equations can be generated in various forms. All of

these may be interpreted as results of two basic approaches, the

augmentation- and the elimination-method. The former method yields the

descriptor form of the system motion, a set of differential-algebraic

equations (DAE), and the latter the state space representation, a minimal set

of ordinary differential equations (ODE). Both of these methods are

surveyed. Particular emphasis is on the discussion of recursive

computational schemes, generating the equations of motion with a number

of operations, which is proportional to the number N of system bodies
(O(N)-for mulations).

For simulation purposes one would like to create that set of system

equations, which can be generated most efficiently and for which the most

efficient and reliable solution techniques are available. Numerical solution

techniques for ODE have been studied in great detail and they are well-

developed. By contrast, DAE have not been investigated for such a long

time. In view of new developments in the latter field the generation of all

the equations required for an efficient and reliable solution of DAE

describing multibody system motion is discussed. These methods, i.e. an

O(N)-formulation and new techniques for solving DAE, are implemented in

the SIMPACK code. Its capabilities are illustrated by simulation of

multibody robot models.
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ABSTRACT

This paper summarizes the formulation of a method known as the joint coordinate method for

automatic generation of the equations of motion for multibody systems. For systems containing

open or closed kinematic loops, the equations of motion can be reduced systematically to a
minimum number of second order differential equations. The application of recursive and

nonrecursive algorithms to this formulation, computational considerations and the feasibility of

implementing this formulation on multiprocessor computers are discussed.

1, INTRODUCTION

In the past decade, the joint (or natural) coordinate method has been implemented in formulating

the equations of motion. The methodology for open loop systems is well developed in a variety of

forms [1-5]. For these systems, the method yields a minimal set of equations of motion since the

joint coordinates are independent. The joint coordinates are no longer independent when closed

kinematic loops exist in a system. For multibody systems containing simple closed loops, constraint

equations between joint coordinates may be derived easily. However, for most spatial closed loops,
the derivation of these constraints can be rather complicated. A simple method for automatic

generation of the closed loop constraints, and a technique to generate a minimal set of differential

equations of motion has been reported in reference [6].

This paper briefly describes the method of joint coordinates for the systematic generation of

the equations of motion for open and closed loop systems. These equations are shown to be
suitable for recursive and nonrecursive algorithms, serial or parallel processing, and symbolic

manipulation. While the discussion principally focuses on multi-rigid-body systems, the assumption

of rigidity may be relaxed by introducing the finite element technique in modeling the deformation
of bodies. This formulation has been incorporated in a set of large-scale computer programs which

have been used extensively to simulate the dynamic behavior of a variety of multibocly systems.

2. EQUATIONS OF MOTION

The equations of motion for a multibody mechanical system can be expressed in different forms

depending upon the choice of the coordinates and velocities that describe the configuration and
motion of the system. In the following subsections, the equations of motion are first expressed in

terms of absolute coordinates and velocities of the bodies in the system. Then these equations are

reduced to a minimal set of equations for open-loop systems. Furthermore, the equations are

generalized for systems containing closed kinematic loops.
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2.1 Absolute Coordinate Formulation

In order to specify the position of a rigid body in a global non-moving xyz coordinate system, it is

sufficient to specify the spatial location of the origin (center of mass) and the angular orientation of a
body-fixed _rtc coordinate system as shown in Fig. 1. For the ith body in a multibocly system, vector

qi denotes a vector of coordinates which contains a vector of Cartesian translational coordinates r i

and a set of rotational coordinates. Matrix A i represents the rotational transformation of the _rt_ i
axes relative to the xyz axes. A vector of velocities for body i is defined as vi, which contains a

3-vector of translational velocities ri and a 3-vector of angular velocities _0i. The components of the
angular velocity vector w i are defined in the xyz coordinate system rather than the body-fixed

coordinate system. A vector of accelerations for this body is denoted by vi, which contains r'i and wi-
For a multibody system containing b bodies, the vectors of coordinates, velocities, and accelerations

are q, v, and _ which contain the elements of qi, vi, and vi, respectively, for i = 1, ..., b.

The kinematic joints between the bodies can be described by m-independent holonomic constraints
as

0(q) = 0 (1)

The first and second time derivatives of the constraints yield the kinematic velocity and acceleration
equations

= Dv = 0 (2)

_= D_ + i_tv = 0 (3)

where D is the Jacobian matrix of the constraints. The equations of motion are written as [7]

M_ - DT_. = 8 (4)

where M is the inertia matrix containing the mass and the inertia tensor of all bodies, )- is a vector of

m Lagrange multipliers, and II = II(q, v) contains the gyroscopic terms and the forces and moments

that act on the system. The inertia matrix is not a constant matrix since the rotational equations of
motion are written in terms of the global components of the angular accelerations. The term DT). in

Eq. 4 represents the joint reaction forces and moments. Equations 1-4 represents a set of

differential-algebraic equations of motion for a multibody system when absolute coordinates are used.

These equations will have the same form whether the system is open- or closed-loop.

2.2 Joint Coordinates and Open Loop Systems

The constrained equations of motion expressed by Ecls. 1-4 can be converted to a smaller set of

equtions in terms of a set of coordinates known as joint coordinates. For multibody systems with open

kinematic loops, this conversion yields a set of differential equations equal to the number of degrees

of freedom. We may consider one branch of an open-loop system as shown in Fig. 2. The bodies are

numbered in any desired order. The relative configurations of two adjacent bodies are defined by one

or more so-called joint (or natural) coordinates equal in number to the number of relative degrees of

freedom between these bodies. For example, (}ij contains two angles if there is a universal joint
between bodies i and j, or it contains only one translational variable if there is a prismatic joint

between the two bodies. The vector of joint coordinates for the system is denoted by 6 containing all

of the joint coordinates and the absolute coordinates of a base (reference) body if the base body is

not the ground (floating base). Therefore, vector 0 has a dimension ecjual to the number of degrees

of freedom of the system. The vector of joint velocities is defined as 0, which is the time derivative
of 0. It can be shown that there is a linear transformation between (} and v as [1-4]

v = B_ (s)
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Figure 1 Body-fixed and global coordinate systems. Figure 2 An open-loop system.

Matrix Bis orthogonal to the Jacobian matrix D. This can be shown by substituting Eq. 5 in Eqo 2 to
find DBB = 0. Since 9 is a vector of independent velocities, then

DB = 0 (6)

The time derivative of Eq. 5 gives the transformation formula for the accelerations,

(7)

Substituting Eq. 7 in Eq. 4, premultiplying by B T, and using Eqo 6 yields

l_ii = f (8)

where

A4= BTMB (9)

f = BT(g - Mi3e) (10)

Equation 8 represents the generalized equations of motion for an open-loop multibocly system when the
number of the selected coordinates is equal to the number of degrees of freedom,

2.3 Joint Coordinates and Closed-Loop Systems [6]

The equations of motion for open-loop systems, represented by Eq. 8, can be modified for systems

containing closed kinematic loops. Assume that there is one or more closed kinematic loops in a
multibody system, such as the closed-loop shown in Fig. 3(a). In order to derive the equations of

motion for such a system, the closed-loop is cut at one of the kinematic joints in order to obtain an

open-loop system as shown in Fig. 3(b). For this cut system, which will be called the reduced system,

the joint coordinates are defined as for any open-loop system. It is clear that if we now close this

system at the cut joint(s), the joint coordinates will no longer be independent, i.e., for each closed-

loop there exist one or more algebraic constraints between the joint coordinates of that loop.

The constraint equations for the closed kinematic loops may be expressed implicitly as

TCe) = o (11)

The time derivative of the constraints yields

= C8 = 0 (12)
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Figure 3 A system containing a closed-loop. (a) The closed-loop.
(b) Its reduced open-loop representation.

where C is the Jacobian matrix of these constraints. Similarly the acceleration constraints for the
closed-loops are written as

¥-=C_+_ =o

Now the equations of motion of Eq. 8 are modified for closed loop systems as

i_11"- cTv = f

(13)

(14)

where v is a vector of Lagrange multipliers associated with the constraints of Eq. 11. Equations

11-14 represent the equations of motion for a multibody system when the number of selected joint

coordinates is greater than the number of degrees of freedom of the system.

It is shown in [6] that the Jacobian matrix C in Eqso 12-14 can be obtained systematically. If the
Jacobian of the constraints for the cut-joint(s) is denoted by D*, then the product of this matrix and
matrix B yields the C matrix as

D*B ÷ C
(15)

The product D'B, in most cases, will have redundant rows. Matrix C is found after the redundant rows

are eliminated. Since the elements of both matrices D* and B are available explicitly in symbolic
form, the elements of C can also be determined symbolically. Note that C is a small matrix in

comparisson with D* and B. Furthermore, since the elements of C can be determined symbolically,
the term _ in Eq. 13 can also be found symbolically.

2.4 Minimum Number of Equations of Motion for Closed-Loop Systems

For a multibody system containing closed kinematic loops, the Lagrange multipliers of Eq. 14 can be

eliminated in order to obtain a minimal set of equations of motion in terms of a set of independent

joint accelerations. For this purpose, a set of independent joint coordinates are selected as a subset

of vector e. Then a velocity transformation matrix E can be found such that [6]

= E0(i) (16)

where e(i) is the vector of independent joint velocity with a dimension equal to the number of degrees

of freedom of the system. Note that the joint velocities outside the closed-loops and the independent
joint velocities within the closed-loops are not affected by this conversion. The matrix E is
orthogonal to the C matrix; i.e.,

CE=O
(17)

The time derivative of Eq. 17 gives
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= Eb'(i) + EO(i)

Substituting of Eq. 18 in Eq. 14, premultiplying by ET, and using Eq. 16 yields

(18)

l_,ll'(i ) = f, (19)

where

I_' = ETI_E (20)

f, = ET(f _ i_l_(i) ) (21)

Equation 19 represents the minimum number of equations of motion describing the dynamics of a

multibody system containing closed kinematic loops.

Matrix E can be found in either explicit form or in numerical form for most closed kinematic

loops. For this purpose, we can partition vector O into dependent and independent sets, O(d ) and

O(i), and correspondingly we can partition matrix C into two submatrices C(d ) and C(i ), Therefore,
Eq. 16 becomes

C(d)O(d ) + C(i)O(i ) = 0

This equation can be written as,

O(d) = - C(d;lC(i)O(i)

or,

-C(d;lC(i)

where a proper selection of the independent joint velocities guarantees that C(d ) is a nonsingular
matrix, Comparing Eqs. 16 and 22 yields an expression for E as

E = I-C(d;I 1C(i)] (23)

Since the elements of matrix C are available explicitly, it may be possible to find the elements of E

explicitly. This is due to the fact that the operation of Eq. 23 is performed separately on each

closed-loop, and in addition, the C matrix for a closed-loop is relatively small in practical

applications.
O

Equation 21 states that for evaluating the equations of motion, in addition to matrix E, matrix E is

also neec_. An apparent approach is to evaluate the time derivative of Eq. 23° However, since the

product E�(i ) is needed in Eq. 21, we can evaluate this product directly. For this purpose, Eq. 13 is
written in a partitioned form as

C(d)li(d ) + C(i)b'(i ) = -(_o

This equation is then rearranged as

- -I¥__(d) = - C(d) lc(i)tl'(i) - C(d)
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or,

I'l i_(i)
"C(d;1C(i)

(24)

Comparison of Eqs. 18 and 24 yields

(25)

In the process of solving Eq. 19, the independent joint accelerations and velocities are integrated
to obtain the independent joint velocities and coordinates. Then Eq. 16 (or Eq. 12) is used to find the

dependent joint velocities. However, prior to that the dependent joint coordinates need to be

computed. In order to find the dependent joint coordinates, the constraints of Eq. 11 must be solved
for each closed-loop. These constraints are nonlinear in 0 (or q) and they are not available

explicitly. However, an iterative formula for finding the dependent joint coordinates can be derived.

By applying the Newton-Raphson method to Eq. 11, the iterative formula is found as

CAO=-9*
(26)

where A0 denotes the corrections in vector 0 and #* denotes the violation in the constraints. Note

that the violation in the constraints of Eq. 11 is the same as the violation in the constraints written in

terms of the absolute coordinates of the bodies common to the cut joint(s). For the sake of simplicity,
the iteration formula of Eq. 26 is shown in its abstract form. We assume it is understood that in this

equation the known (independent). elements of 0 and their corresponding columns of C have been

rnanipulated properly. Furthermore, if there is more than one closed kinematic loop in the system, this

iterative process can be applied separately to the constraint equations of each loop. The important

point to draw from Eq. 26 is that explicit exl_essions for the joint coordinate constraints, represented
by Eq. 11, are not needed.

3. COMPUTATIONAL CONSIDERATIONS

For most multibody systems, the inertia matrix M and the vector g containing the external

forces/moments and the gyroscopic terms can be constructed systematically [7]° A systematic

construction of the velocity transformation matrix B, for open or reduced open loop systems, has been

shown in [4]. This matrix is constructed from the topology of the system by assembling smaller block

matrices representing different type of kinematic joints. Since matrix B can be constructed in
explicit form in terms of the absolute coordinates q, then matrix B can also be determined and

expressed in explicit form as a function of q and v. For multibody systems containing closed

kinematic loops, matrix C for Eqs. 11-14 and matrix E for Eq. 18 must be constructed. The process
outlined in the preceding sections will he demonstrated by a simple example.

Example: Consider the multibody system shown in Fig. 4(a), containing four moving bodies. Body 1

is connected to the ground by a prismatic joint T l , and there are four revolute joints, R= through Rs ,

with parallel axes connecting the bodies in a closed-loop. If the closed-loop is cut at Rs, the reduced

system of Fig. 4(b) is obtained. For the reduced system, four joint coordinates, 0= , 0=, 0= , and 0_

are defined, where 0= represents relative translation between body 1 and the ground, and the other

three joint coordinates represent relative rotations between the adjacent bodies. Four unit vectors,

u I through u, , are defined along the four joint axes. The vector of absolute velocities v is a

24-vector, where the vector of relative velocities 0 is a 4-vector. The velocity transformation
matrix for this reduced system is:
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Figure 4 (a) A multibody system with four moving bodies containing a closed-loop.
(b) Its reduced open-loop representation.

B

uz 0 0 0

0 0 0 0

ul -dz2u2 0 0

0 u2 0 0

u_ -d2suz -d.us 0

0 uz us 0

u, -d,,u, -d,,u, -d,,u,

0 u= u s u_

matrix, a represents a 3x3 skew-
where dij vectors, for i, j = 2, 3, 4, are shown in Fig. 4(b)'nln!hiSpresentsadabresymmetric matrix made of the components of a 3-vector a, the cross product of two

vectors a and b. The structure of B shows that the matrix is constructed from 6xl block matrices

O ' representing a prismatic joint along the unit vector u_, and 6xl block matrices LUij
representing revolute joints along unit vectors ui, i = 2, 3, and 4 [4].

The constraint equations for the cut revolute joint R s , i.e., e*, between bodies 1 and 4 in terms

of the absolute coordinates of these bodies can be expressed as [7]:

e 3 -= r I + s z - rq - S_ = 0

e z _ nln_ = 0

where 9 j represents three algebraic equations stating that two points P_ and P_ on the joint axis must

coincide, and e 2 states that two unit vectors n_ and n_ along the axis of Rs must remain parallel. It
should be noted that the cross product of two vectors yields three abgebraic constraints, and only two

out of three are independent. The time derivative of these constraints yields [7]:
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0 0 0 0 -I s_ r_ =
1 0 0 0 0 0 -nin_ "_

Therefore, the coefficients of the velocity components provide the Jacobian matrix for this cut

revolute joint as:

°=E"000o_,
n_nl 0 0 0 0 0 "nln_ (5x24)

Note that this is a 5x24 matrix. The product D'B is found to he

=Fo
Lo -n_n_u= -n:n_us -n:n,u_ (5x4)

which is a 5x4 matrix since the columns of the matrix correspond to the four joint coordinates. Note

that the first column of the matrix is all zeros, and this column corresponds to 6 1 which is not in the
closed-loop. Based on the initial assumption, the four revolute joint axes are parallel, therefore, the

cross product n_u= = n_u_ = n_u_ = O. This means that the last t'wo rows of the 5x4 matrix are zeros

and they can be eliminated from the matrix• This leaves a 3x4 matrix as:

D*B = [0 (aa,+_,)u= (a,,+s'_)us (a,_+s_)u_](3x4)

If for a given configuration numerical values are substituted for the components of the vectors in this

matrix, it will be found that the three rows are not independent -- one row is redundant and can be

eliminated. For example, for a particular configuration, the numerical values of the elements of this
matrix may be:

i 0 -1.4142 -1.41421D*B = 0 -1.4142 -1.4142 I (a)
-1.4142 -1.4142 0 J (3x4)

This result should have been expected, since the closed-loop is a four-bar mechanism with one relative

degree of freedom between its four bodies. Since there are three joint coordinates associated with
this four-bar mechanism, there must be only two independent constraints between them. Therefore,

matrix D*B of Eq. (a) becomes
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I00 0 -1.4142 -1.41421 (b)
C = -1.4142 -1.4142 0 .1(2x4 )

Since matrix C is available in explicit form, its time derivative and hence the product _e can be found

for Eq• 13•

After elimination of the redundant row matrix C can be written in abstract form as

C_ C s C 6

where c I , .•., c 6 are known explicitly from Eq. (a). If we choose 02 as the independent joint

coordinate for the closed-loop, and noting that e z is independent from the loop, we can have

01

0z

=E

o, LO,J

where

0- I

I 0 1
I 0 el

I 0 e 2
I-

C3C W - ClC 6 CIC5 - C2C _

, el -- , and ez =
C2C 6 - C$C 5 C2CG - C3C 5

If the numerical values of the elements of C from Fq. (b) are used, matrix E will be found to be

I--

I 0
I

0 I

0 -I
E=J

0 I
I--

4. RECURSIVE VERSUS NONRECURSIVE ALGORITHMS

The equations of motion for open or closed loop systems (Eq. 8 or Eqs. 11-14) can be generated and
solved for the accelerations either recursively or nonrecursively. Since the inertia matrix M is
symmetric, a standard nonrecursive technique such as LTDL factorization can be employed to solve for

the unknown accelerations. An alternative recursive approach for finding the unknown accelerations

was first developed by Featherstone [8]. The idea is to remove one body from a multibody system and
then to consider the remaining system as a new multibody system. Articulated body inertias are the

properties which make the remaining system act as the original one. The articulated inertias are

calculated by projecting the mass and inertia of the removed body onto the remaining system•
Repeatedly removing one body from the multibody system leads to a system with only one body for

which the accelerations can easily be calculated• The accelerations of the removed bodies will then

be obtained by back substitution. Wehage interpreted this process mathematically by using a large

number of equations of motion [9-11]. The unknowns of the equations are the absolute and joint

accelerations, as well as joint reaction forces. The equations of motion are solved by applying matrix

partitioning. This more theoretical approach allows for a very general formulation of the recursive



projection algorithm. Wehage shows that a recursive algorithm is equivalent to a "block LU
factorization."

For an open loop system containing n joints, a nonrecursive matrix factorization algorithm requires

a CPU time of approximately Order(n2). For the same system, a recursive algorithm requires a CPU
time of Order(n). However, the factor in front of O(n) or O(n 2) can make one algorithm more or less

efficient than the other, depending upon n. Therefore, some examples are shown in this section to

clarify this concept.

In the recursive algorithms, the velocity transformation matrix B can be represented as the

product of two matrices [ 9 ],

B = G-1H (27)

The matrices G and H are found from velocity transformation equations between consecutive bodies as

v. = G.v. + H.0.
J J I J J

The equations of motion for an open loop system; i.e., Eq. 8, are then written as

(G-1H)TMG'IH_ = (G-1H)T(g - MG-I¥)

(28)

(29)

where ¥ contains quadratic velocity terms which can be constructed from

¥j =C.v.j,+ A.jj .

A detailed description of the recursive algorithm used in this study can be found in [12].

(30)

Two simple examples are considered here for comparison of the CPU times. Figure 5 shows a

highly parallel and a highly serial system. In both systems, the number of joints n is increased,

starting from one, between simulations. For the parallel system with only revolute joints, the

nonrecursive method is more efficient than the" recursive method regardless of number of joints, as

shown in Fig. 6(a). It can be observed that both algorithms yield CPU times that increase almost

linearly as n is increased. For the serial system, however, there is a breakpoint beyond which the

recursive algorithm becomes more efficient than the nonrecursive algorithm. As shown in Fig. 6(b, c,
d), the breakpoint for the number of joints n is six, nine, and five when the serial system contains only

revolute joints, prismatic joints, or spherical joints respectively.

(a) (b)

0
0
o

Figure 5 Two systems with (a) a highly parallel and (b) a highly serial structures.
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Figure 6 CPU time for one function evaluation versus number of joints for (a) a highly parallel system,

and (b), (c), (d) highly serial systems containing only revolute, prismatic, and spherical joints

respectively.

In reference [11], the recursive projection algorithm of open loop systems is modified for systems

containing closed kinematic loops. This algorithm has been tested and the result is reported in [12].

It is shown that since a closed loop is cut at one of the joints to form a reduced open loop system, the

breakpoint for the number of joints in a closed loop is approximately double of that of an open loop

system. For example, if the closed loop contains only revolute joints, there should be approximately

twelve or more bodies in the loop for the recursive algorithm to exhibit more efficiency than the

nonrecursive method.

For mechanical systems with only rigid bodies, it is rather unlikely to have open or closed loops

with enough number of bodies to make a recursive algorithm more efficient than a nonrecursive one.

However, when one or more of the bodies in a system are considered as deformable, then the concept

of recursive projection technique becomes highly attractive.

5o PARALLEL COMPUTATIONAL CONSIDERATIONS

When computation on a multiple-instruction multiple-data (MIMD) multiprocessing system is

considered, obvious parallelisms arising from the topology (e.g. multiple branches) can be exploited.

However, a true measure of the suitability of a computational scheme for parallel processing is the

degree of intrinsic parallelism in the scheme for the worst case (i.e. single branch open-loop linkage).
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The formulation described by Eq. 8 was applied to a 6 degree-of-freedom Stanford arm that

consists of a base body plus 6 links all of which are connected to each other serially by revolute joints
except link 3 which is connected to link 2 by a prismatic joint. The algorithm to compute I! at each

time step was represented as a data-flow graph. It is known that the shortest possible time to
traverse the graph from its beginning to its end is the length of the longest possible path in the graph,
or the critical path.

The maximum speedup for any multiprocessing system is, therefore, the ratio of the serial

computation time to the time corresponding to the critical path of the data-flow graph, since the

latter is a property of the computational scheme alone. The length of the critical path was computed

for a Stanford arm possessing 1 through 6 degrees of freedom. A plot of the maximum speedup with

the degrees of freedom in the Stanford arm is shown in Fig. 7. The plot indicates the possibility of

large speedups (11 to 76) if a suitable multiprocessing system and a proper scheduling algorithm are

used, It is also observed that the length of the critical path of the data-flow graph resulting from the

formulation increases linearly as the number of degrees of freedom increases in a serially connected

multibody system. This suggests that the maximum speedup will approach a constant (ratio of the rate
of increase of serial computation time to the rate of increase of critical path length) for a large

number of degrees of freedom.

Figure 7
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Maximum speedup versus number of degrees of freedom for the Stanford arm.

The velocity transformation of Eqo 5 offers other possibilities for parallel processing. It is

evident from the approach described above that if the coordinate set, 6, used to describe the

configuration of the system is such that the critical path of the data-flow graph does not increase or

increases very slowly as new degrees of freedom are added to the system, then the maximum speedup

will increase linearly or approach a very high limit at large numbers of degrees of freedom.

Therefore, if matrix B can be chosen such that the resulting 6 is this type of a coordinate set, then

the formulation would be very suitable for parallel processing because of very large potential gains in

speedup. Work is currently under way to determine such matrices B automatically on the basis of the

topology imposed by each type of joint in a multibocly system.

6. DEFORMABLE BODIES

In the dynamic analysis of multibody systems, the elastodynamic effects may play an important role on

the behavior of the system. The most popular technique for describing the flexibility of the

components of a system is the finite element method. In standard finite element formulation, the

gross motion (large displacements, large deformations) is not taken into account. However, in order

to analyze flexible multibody systems, such phenomena must be considered. Several researchers have

suggested procedures that successfully, introduce elastodynamic effects into multibody dynamics
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equations [13-15]. The main problem with the inclusion of elastodynamic effects is that the flexible

bodies may have a relatively complex geometry. This implies that a large number of nodes may be
necessary and, therefore, a system of equations with a large number of degrees of freedom will result.

In order to gain computational efficiency, a formulation based on the modal superposition method has

been suggested to reduce the number of degrees of freedom of the model [14].

The method of joint coordinates for multi-rigidbody dynamics can be extended to a system of

mixed rigid and flexible bodies. The equations of motion for the rigid bodies are written in terms of

the absolute coordinates, similar to Eqs. 1-4, and the equations of motion for the flexible bodies are
written in term of either nodal or modal coordinates. Additional kinematic constraints may be

necessary to represent the connectivities between rigid-to-flexible and flexible-to-flexible bodies.

Then, a velocity transformation process, similar to that of rigid bodies. (Eqs.5-10) can be applied to

remove the algebraic constraints and their corresponding Lagrange multipliers. The resultant

equations of motion for an open loop system can be converted to a minimal set of differential
equations. In the case of closed loop systems, the equations of motion may or may not contain

algebraic constraints and Lagrange multipliers.

For systems containing flexible bodies with linear elastic material properties, the equations of

motion with modal coordinates can be used. However, in some applications, it may be, necessary to

consider the equations of motion in terms of the nodal coordinates in order to obtain more accurate
results.

7. CONCLUSION

The equations of motion for multibocly systems containing closed kinematic loops can be written either

as a set of differential-algebraic equations (Eq. 11-14) or as a set of ordinary differential equations

(Eq. 19). The elements of the constrained equations of motion given by Eqs. 11-14 can be constructed

efficiently. Although all of the joint coordinates are not independent of each other, and hence the
number of integration variables is not a minimum, the numerical integration of these equations can be

performed efficiently. For example, a dynamic simulation of the system shown in Fig. 4, including

several force elements, was performed using two different formulations -- the absolute coordinate

formulation of Eqs. 1-4 and the joint coordinate formulation of Eqs. 11-14. The numerical integration

of the equations of motion in both cases was carried out using a predictor-corrector Adams-Bashforth

algorithm on a desktop workstation. The CPU time for simulating ten seconds of dynamic response

was 352 seconds for Eqs. 1-4 and 75 seconds for Eqs. 11-14. The results obtained from these and

other simulations have shown that the formulation of Eqs. 11-14 yields about five times or more

efficiency over the formulation of Eqs. 1-4. The degree of efficiency depends on the number of

bodies, number of joints, and the connectivity between the bodies.

Equation 19 provides the minimum number of equations of motion for a multibody system

containing closed kinematic loops. The number of equations and the number of integration variables

are smaller when compared to those of Eqs. 11-14. Therefore, it may appear that the numerical

solution of Eq. 19 to be more efficient than that of Eqs. 11-14. However, a careful examination of

the elements of Eq. 19 would reveal that the overhead associated with evaluating these elements may

be more than the overhead associated with the additional number of equations and integration

variables of Eqs. 11-14. Numerical simulations of several problems using the two methods have shown

that the computation time associated with these two formulations are about the same.

Systematic generation of the elements of the equations of motion with the joint coordinates

makes the formulation ideal for symbolic generation of these elements. Computer programs have been

developed that symbolically generate the equations of motion for rigid body systems. The equations
are generated in an optimized fashion to improve the computational efficiency of the dynamic

simulation. The programs dealing with rigid and flexible bodies evaluate the equations of motion
numerically. The equations of motion for deformable bodies can be considered either in terms of the
modal or the nodal coordinates.
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Another interesting feature of these equations is that the process of solving the equations of

motion for unknown accelerations can be performed either recursively or nonrecursively. It has been

shown that for highly serial systems with long chains, a recursive process may yield computational
efficiency. Further adaptation of these equations to multiprocessor computers results in a highly

efficient simulation package.
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Abstract
The equations of motion of a multibody system are nonlinear in nature, and thus pose a

difficult problem in linear control design. One approach is to have a first-order
approximation through the numerical perturbations at a given configuration, and to design a
control law based on the linearized model. In this paper, a linearized model is generated
analytically by following the footsteps of the recursive derivation of the equations of motion.

The equations of motion are first written in a Newton-Euler form, which is systematic
and easy to construct; then, they are transformed into a relative coordinate representation,
which is more efficient in computation. A new computational method for linearization is
obtained by applying a series of first-order analytical approximations to the recursive
kinematic relationships. The method has proved to be computationally more efficient because
of its recursive nature. It has also turned out to be more accurate because of the fact that

analytical perturbation circumvents numerical differentiation and other associated numerical
operations that may accumulate computational error, thus requiring only analytical
operations of matrices and vectors.

The power of the proposed linearization algorithm is demonstrated, in comparison to a
numerical perturbation method, with a two-link manipulator and a seven degrees of freedom
robotic manipulator. Its application to control design is also demonstrated.

1. Introduction
The behavior of a nonlinear dynamic system can be approximated by a linearized model

in the neighborhood of a reference configuration. Intuitively, linear models of dynamic
systems can be obtained by simply omitting nonlinear effects of the nonlinear dynamic
systems, such as Coriolis forces, centrifugal forces, and the interaction forces between bodies.
Such a model, however, cannot satisfy the needs of computer-aided design of control systems
for multibody systems because the intuitive simplification is usually case-dependent.
Therefore, a better linearized dynamic model based on a general purpose dynamics model is
necessary. The approach that fits this requirement most is first-order approximations of the
nonlinear dynamic models, which yield valid results in the neighborhood of the reference
configuration for dynamic and control analysis. A straightforward approach to obtain first-
order approximations of multibody systems is first to generate the analytical closed-form,
nonlinear equations of motion of the systems, and then to generate the linearized equations of
motion using first-order Taylor expansions. Unfortunately, these analytical equations of
motion are generally not available because they are too complex to be generated.

Due to the difficulty of analytically generating the closed-form, nonlinear equations of
motion of a multibody system, a numerical perturbation method is usually applied to obtain a
linearized model at a certain configuration. For instance, in DISCOS [1] the numerical
perturbation method is employed to generate a linearized model for stability analysis of a
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multibodysystemat a selected configuration. Following a similar idea, Liang [2] implemented
a numerical perturbation method with DADS [3] for multibody mechanical system control.
Moreover, the numerical perturbation method has been widely implemented in dynamic and
control analysis. For example, Sohoni and Whitesell [4] applied it in ADAMS, and Singh,
Likins, and Vendervoortt applied [5] it to generate linear models of flexible body systems.

In the implementation of the numerical perturbation method, iterative computations
are employed to ensure that the resulting linearized models are accurate. However, the
iterative computation sometimes may not generate a satisfactory linearized model because of
failure in convergence. Therefore, a trade-off between the accuracy and convergence must be
made to generate a useful linearized model. An accurate linearized model is difficult to be

generated with good computational efficiency when the numerical perturbation approaches are
applied. In resolving this problem, the numerical perturbation method must be avoided during
the linearization procedure.

On the other hand, symbolic programming languages can be used to devise efficient
computational techniques to obtain the linearized manipulator models. Vukobratovic and Nenad
[6] proposed the linearization technique that first generates the nonlinear dynamic models of
the manipulator by means of symbolic programming languages, and then takes first-order
approximation from the given nonlinear model. Following the same approach, Neuman and
Murray [7] linearized symbolically the Lagrangian dynamic robot model about a nominal
trajectory to generate the linearized and trajectory sensitivity models of a manipulator.
Balafoutis, Misra, and Patel [8] further extended Neuman's approach to obtain more
computational efficiency in generating linearized models by using the fact that the derivatives
of trigonometric functions need not be computed explicitly, and that the partial derivatives of
the homogeneous transformation matrices may be obtained merely by row and column
manipulations. The same idea was applied to generate linearized models for flexible multibody
systems by Jonker [9]. Thus, although this approach has the advantage of not using the
numerical perturbation method, there is at the same time a disadvantage: it relies heavily on
symbolic programming languages. Consequently, the approach is restricted to special case
studies only until a general purpose symbolic manipulation package for the dynamic modelling
becomes available.

In searching for a general purpose computer-aided dynamic analysis algorithm, Bae
and Haug [10,11,12] developed a recursive formulation, which was later improved by Bae,
Hwang and Haug [13,14]. In this approach, the equations of motion are first written in a
Newton-Euler form, which is systematic and easy to construct. They are then transformed
into a relative coordinate representation, which is efficient for computation. This approach is
extended in this paper to efficiently generate a linearized model using the recursive
computational structure and applying the analytical linear approximations of the recursive
kinematic relationships, without applying numerical perturbations. The computational
efficiency and opportunity for parallelism of the recursive algorithm would make it possible
to linearize successively for adaptive dynamics control.

An analytical linearization algorithm is derived by using the recursive variational
derivation, and by linearizing kinematic relationships analytically. In the recursive
formulation, the equations of motion are obtained through a series of coordinate
transformations. By analytically taking first-order approximations of kinematic
relationships between Cartesian, state vector, and joint variables and then applying these
linearized relationships in the recursive variational derivation, linearized equations of motion
are generated in joint space. The proposed linearization algorithm is shown in Fig. 1 and is
explained as follows:

( 1 ) Variational equations of motion are obtained in Cartesian space and the generalized mass
and force are approximated with first-order Taylor expansions.

(2) First-order approximate kinematic relationships are obtained between Cartesian
variables and state vector variables [14] and are substituted into the variational
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equationsobtainedin (1). Linearizedvariationalequationsin statevectorspaceare
generated.

(3) First-orderTaylorexpansionsfor the kinematicalrelationshipsbetweenstate vector
variablesandjoint variablesareobtained,and thensubstitutedinto the approximate
variationalequationsobtainedin (2).

( 4 ) Linearizedequationsof motionareobtainedfrom the approximatevariationalequations
in joint space. At this stage,open-chainmechanismsareexpressedin termsof
independentcoordinatesandclosed-chainmechanismsareexpressedina mixed
differentialalgebraicequation(DAE)form.

( 5 ) Linearizedequationsof motionexpressedonly in termsof independentcoordinatesare
written in state spaceform for controlapplications.

The restof the paper is organizedasfollowing. In Section2, linearizedkinematic
relationshipsare expressedin termsof thegeneralizedstatevector,which is usedto simplify
expressionsand to obtaincompactequations. In Section3, linearizedrelativekinematics
relationsarederivedfor two contiguousbodies. Thelinearizedequationsof motionare
developedin Section4. In Section5, numericalexamplesof the recursivelinearization
methodaregiven. In addition,controldesignsbasedon thelinearizedmodelsand linearcontrol
theoryaredemonstrated.Finally,conclusionsarepresentedin Section6.

2. Generalized State Vector Notation

In this section, a first-order Taylor expansion is applied to approximate the
relationship between Cartesian variables and generalized velocity state variables. The
generalized velocity state vector, called the velocity state, is used to simplify expressions in
later derivations. It is defined as [13]

_,p=[ rp+_pmp ] (1)
COp

where the subscript P represents the origin of a body-fixed frame, as shown in Fig. 2. The
Cartesian velocity of point P can be written as

_p

where rp and mp are the translational velocity of point P and the angular velocity of a body-

fixed frame at point P, respectively.

From the velocity expressions in Eqs. 1 and 2, the Cartesian velocity Yp is expressed as

yp=[ I-rp 1, P
0 I

= Tp _'p ( 3 )

Replacing rp by the virtual displacement 6rp and _p by the virtual rotation 6_p, yield

the variation of the position state vector.

SZe =Tp 5Zp (4)

The Cartesian acceleration of the body-fixed frame shown in Fig. 2 is defined as the time
derivative of Eq. 3,

_fp =Tp Yp-Vp (5)
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Erp=plwhere Vp = is a velocity coupling vector.

0 J
Since the right sides of Eqs. 1 to 5 are explicitly expressed in terms of Cartesian

variables, their first-order expansions can be obtained analytically with respect to
perturbations in the Cartesian variables.

First, by expanding Tp at a reference configuration, Eq. 4 can be represented as

&Zp=(T_ +dT_ +O(A) 2) SzP (6)

where d denotes a first-order perturbation with respect to Cartesian variables; the
superscript o signifies that the quantity is evaluated at a reference configuration, i.e.,

= A
d_ _ evaluatedato

and A denotes perturbedquantily,which isexpressed interms of the variablesinthe

Cartesianspace, The perturbationof matrixTp can be obtainedas

dTp = I 00 -d_p]0 (7)

where the partial derivative of the position vector of point P can be expressed as

drp = dl:p - _p d_p (8)

Similarly, the acceleration relationship, Eq. 5, can be expanded as

_'p =[T_ +dT_, + O(A) 2] '_p-[V_ +dV_ + O(A) 2] (9)

The derivatives of the position state variable and the Cartesian variable can be related
from Eq. 6 as

dZp = Tp dZp

and the derivative of the Cartesian velocity vector can be written as

dYp=d(Tp _'p)

= Tp d _'p + crrp _'p

where

dl"p _'P=I raP0 "mP_P0 I d_'P

(10)

(11)

(12)

where d _'p and d ;;p are the perturbations of velocity and position state vectors. Based on the

relationships in Eqs. 9, 10, and 11, the derivative of the variables in the Cartesian space can
be expressed in terms of the derivatives of the state variables.

3. Relative Kinematics of Two Contiguous Bodies
In this section, a first-or_ler Taylor approximation is derived to represent relative

kinematic relationships between contiguous bodies that are constrained by a kinematic joint,
as shown in Fig. 3. The relative kinematic relation between the velocities of the two
contiguous bodies i and j is defined as [13]

Yj= _'i + Bijqij (13)
where
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Bij = o_lij + (_j + ji)H iJ
Hij

Relationshipsbetweenvirtualdisplacementsandrotationsof thesebodiesareobtainedby
replacingthe velocityvectors in Eq. 13 with virtual translationaland rotationalvectors; i.e.,

Taking

where

<57'j= 87' i + Bij <5'qij
the time derivative of Eq. 13 yields the acceleration relationship

(14)

Yj = Yi + Bij qij + Dij (I 5)

Dij = 13ij qij
As shown in Eqs. 13, 14, and 15, the state variables of body j are expressed in terms

of the state variable of body i and the joint variables used to define the relative motion between
bodies i and j. The first-order Taylor expansions of Eqs. 14 and 15 with respect to the state
variable of body i and the joint variables can be expressed as

o (16)
_;_j = 5Z i + [ a_ + dBij + O(A) 2] &:lij

#j = +i + [ B_ + dB_ + O(&) 2] "¢lij+ [D_ + dD_ + O(A) 2] (17)

where dBij and dDij are computed in terms of the state variables of body i and the joint
variables.

Linearized equations of motion are generated based on the linearized joint kinematic
relationships and linearized relationships between the state space variables of bodies i and j.
From Eqs. 13 and 14, relations between the perturbations of state variables and relative
coordinates are expressed as

(18)
dZj = dZ i + Bij dqij

o'_'j = d_' i + dBij qij + Bij d¢lij ( 19 )

• • oo

dYj= dY i + dBijqij + Bijdqij + dDij (20)

4. Linearized Equations of Motion of a Tree Structural Mechanism
The linearized equations of motion of a tree structure mechanism that contains n joints

and n+l bodies, as shown in Fig. 4, are presented in this section. By going through the

procedure of variational derivation [13] and by replacing the nonlinear kinematic
relationships with their first-order approximations, one can generate the linearized
equations of motion for an open-chain system. Applying the linearized kinematic
relationships to the recursive variational approach yields the linearized equations of motion
that are written in terms of the joint variables.
4.1 Variational Eauations in Cartesian Snace

The variational form of the Newton-Euler equations of motion for an n-body system is

written as [3]
n

0 = _ qSZT (MiYi - Qi ) (2 1 )

i = 0
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whereMi is the mass matrix and Qi is the generalized force. The variational equation must

hold for all kinematically admissible variations 8Zi, i = 1..... n; i.e., the kinematic constraints

on the system must be satisfied by 5Z i. Then approximate variational equations can be

generated from a set of approximations of the generalized mass and force for each body, which
are expressed as

Mi = M°+ da°+ O(A) 2 (22)

Qi = QO+ dQ? + 0(/,) 2 ( 2 3 )
where dM i and dQ i are expressed in terms of Cartesian variables.

4.2 Variational Eauations in State Vector SDacff

Approximated variational equations in state vector space can be obtained by
substituting Eqs. 6, 10, 22, and 26 into the equations of motion in Cartesian space and by
replacing Cartesian variables with the state variables• The approximated variational
equations can be written as

n

o ;, T ° T ° o0 = _zT{[TTMOT_iYi-Ti (MOv_)i+Ol0] + [(dTiMOT_ i +TTdMo-rqi +
i = o

o

tt_odt?,_i_(dttomo_+tTdMo_+tTomo_+dtt_o o+TTdQ°)]+O(A)2 }
(24)

where V i is a velocity coupling term, which is defined in Eq• 5. In order to simplify Eq. 24,

the notation of the generalized mass matrix IVli and force vector (_i in the state vector space
[13] will be used henceforth.

where

The equations of motion are thus expressed as
n

__T{_Mo_,_a_+dMo_.d_ +ol_=}
i = 0

(25)

_, = dtTMiti +TtdMiTi+TtMidTi

dOi = dTTMiVi +TtdMiVi +TtMidVi +dTTQi +tTo_i

and dM i, dTi, dV i and dQ i, which are expressed in terms of the perturbations of the Cartesian

variables, can be rewritten in terms of the perturbations of the state variables by
substituting the relationship between the Cartesian variables and the state variables into
their expressions.
4.3. Linearized Eouations of Motion in Joint SPace

The approximated variational equations of motion in state vector space can be rewritten
in terms of joint variables. As the results in Section 3 indicate, the variables in state vector
space can be transformed into joint variables. The linearized equations in joint space can be
obtained by applying the following procedures. Substituting the approximated kinematic
relationship between bodies n and n-1 into the variational equations yields

n-1

0= _ _T _(Mo_._ +d,_O_.,.d_ +o(_)__+
i = 0

_Zn'r-1 {( IVl°nYn- (_) + dl_l°n_'n - d(_ , 0(6) 2 } + (2 6)

62



_{_InT { (Bnl'°+ dBnT° + O(A)2) { ( I_lO_n - (_1_)+ dlVIO_'n-d(_ + O(A)2 ]}

where the perturbationsare taken with respecttothe statevariablesof the inboard bodies
and the relativevariablesthatare used to definedthe relativemotion between the bodies n and

n-1. Moreover, the relativekinematic matrixBn_I n isdenoted as B n to simplifythe

expressions during the derivation.

Because jointn isnot subjectto any relativeconstraintbetween the connected bodies,

the virtual displacement of the joint coordinate is arbitrary. Thus the coefficient of 6q T is

equal to zero; i.e.,
O O • •

0 = (B T +dB T + O(,_)2)[( IVl°Yn-l_)+dl_l°_' n -d(_ + O(A) 2 ] (27)

Substituting the first-order Taylor expansion of the acceleration vector into state vector
space, and substituting the relationships between state and joint spaces into Eq. 27, gives the
equation of motion corresponding to joint n.

0 0 • 0

"O:'O .(_) + d T "O'O0 = BT ( MnY n (B n MnYn ) _d(B T (_) + O(A) 2) (28)
where

d (BTIVIn_'n) = dBTl_n_'n + BTndlVIn_'n+ BTnl_nd_'n

d(BTnQn ) = dBT(_n + BTdQn

and d_l n and dQ n can be written in terms of the state variables of body n-1 and the relative

variables that are used to define the relative motion between bodies n and n-1. Moreover, the
equation of motion corresponding to joint n at the reference configuration is

0

o =Bn(M°R - (29)
Substituting the relationship in Eq. 29 into Eq. 28 and omitting higher order terms yields

0 • 0

0 = d (BnT ...uO_°_n-n,-d(BT (_) (30)

where Yn can be expressed in terms of the derivative of a set of independent variables

x (= qT -'- T qTn]T ) by substituting the relationships from Eqs.

18, 19, and 20 recursively for j from n to 1.
Following the same arguments used in obtaining Eq. 30, one can obtain the linearized

equations of motion corresponding to joint i as

0 = BTi° d( Ki_ i + Ki+lBi+ 1 cl'i+l + ... + KnB n (l'n - Li) O +

,

dB_ ° ( Ki_' i + Ki+lBi+ 1 cl'i+l+ ... + KnBn q"n - Li) O

fori= 1..... n (31)

where K i= IVIi+ Ki+I,L i = (_i + Li+l - Ki+lDi+l,Kn = IVln,andL n = (}n-

By repeating the above procedure in backward path sequence to the base body, one can
obtain the linearized equation of motion for the base body as

d(Ko_' O+K1Blcl'l+...+KnBn(l" n-L0) O =0 (32)
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For the open-chain mechanism, the linearized equations of motion at the reference
configuration, which are represented in Eqs. 31 and 32, can be obtained recursively. During
the derivation, every perturbed term in the linearized equations can be computed either from
the perturbed variables in the Cartesian variables, which are computed analytically, or from
the analytically linearized relationships among the Cartesian, state vector, and joint
coordinate spaces.

5. Numerical Examples
In this section, the applications of the recursive linearization algorithm are illustrated

by two examples: a two-link manipulator and a robot arm with seven degrees of freedom. The
accuracy and computational efficiency of the proposed algorithm are demonstrated by
comparing the models obtained from the recursive algorithm with those obtained from the
analytical approach and from a numerical perturbation method. In the case of the two-link
system, an exact linearization is accomplished by the use of the symbolic manipulator
(MACSYMA) [15]. However, to generate the exact linearized model for a complicated system
is very difficult, even with a symbolic manipulator. In the second example, a numerical
perturbation is applied to the robot with seven degrees of freedom in order to generate a
reference linearized model with which the results of the recursive linearization algorithm are
compared.
,5.1 A Two-Link Mani.oulator

In this subsection, a two-link manipulator, as shown in Fig. 7, is modeled and tested.
Since all the joints are revolute, one independent coordinate is assigned to each joint. The
manipulator can be modeled as a system of two differential equations. For this system, the
linearization can also be carried out analytically by using the symbolic manipulator
(MACSYMA). Therefore, it is possible to check the accuracy of the recursive linearization
algorithm by comparing the linear models obtained from both approaches: recursive
linearization and MACSYMA implementation.

The recursive linearization produced a linearized model at the specified configuration

that was defined by setting 01, 0 2, ()1, and (_2 to zero. The linearized equation of motion is

o o
o° o° r 0 0 Ir T l

=,o,=0 L00_=, 0.0294|LdTlJ
1.1537 -4.0380 0 0 JL_IdOl1 0.0294 -0.01 76J

written as

de1 =

(33)

where T 1 and T 2 are actuating torques that are applied at the revolute joints. At the same
specified configuration, the symbolic manipulation generated the exact linearized model, which
is identical to the one obtained from the recursive linearization approach. A comparison of the
numerical and analytical results shows that the proposed recursive linearization algorithm
can generate a correct linearized model at a given configuration.

After the linearized model is obtained, a linear controller can be designed by applying
the linear model to existing control design tools. A linear regulator is designed to control the
motion of the manipulator by using the Pro-Matlab package. The pole placement algorithm
[16] is used to compute the full state feedback gain matrix for the nonlinear dynamic model.
The effectiveness of this regulator is tested by applying an initial deviation of the system and
using the regulator to stabilize it. As expected, the linearized model can well represent the
nonlinear model. Therefore, a small initial deviation is tested first. The results of 0.05
radian initial deviations are shown in Figs. 6 and 7. The nonlinear system can be stabilized by
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the linear regulator. Similar results are presented in Figs. 8 and 9 for 1.0 radian initial
deviations.

However, the pole placement algorithm for a multiple-input multiple-output system
does not have a unique solution [17]. The feedback gain obtained from the Pro-Matlab package
is an iterating solution, which is designed to find an insensitive set for the configuration
change. However, this algorithm requires a lot of computation to generate an optimal gain
matrix. Thus, this algorithm cannot be used for an on-line computation for the real time
simulation. To fulfill the on-line computation requirement, a simple and stable pole
placement algorithm is needed. A case particularly interesting is to determine the feedback
controller [17] in such a way that the closed loop equation is decomposed into a set of n
decoupled second-order differential equations.

0 = d_ i + 2_i 0)i d(_i + 0)2 dOi; i= 1..... n (3 4)

where the damping factor _i and the undamped frequency 0)i of each tracking error are

specified by the designer. Defining the nxn constant diagonal matrices A 1= diagi{2F_i 0)i } and

A2 = diagi{ 0)2 }, one can obtain the desired decoupled closed loop equation from Eq. 34 as

0 = d_ + Ald(_ +A 2 dO (35)

The closed loop equation of the linearized model with a proportional-derivative (PD)
controller can be written in a second order differential equation form as

0 =M d_ + (P1-Kv)d(_ +(P2-Kp) dO (36)

where Kp is the position feedback gain matrix and Kv is the velocity feedback gain matrix.
Equating coefficients in Eqs. 35 and 36 gives the desired closed-loop feedback gain matrices as

KV = MA1 - P1 (37)

Kp = MA 2- P2 (38)
Consequently, a linear regulator is designed to control the dynamic system. As shown in Figs.
10, 11, 12, and 13, the linear regulator can stabilize the nonlinear dynamic model for both
small and large initial deviation cases.
5.2 A Robot with Seven Degrees of Freedom

Figure 10 shows a robot arm that has seven degrees of freedom. The system consists of
eight bodies, including the base body, which is designated as ground. The adjacent bodies are
connected by revolute joints. Joints 1 to 7 are identified as Shoulder Roll, Shoulder Pitch,
Elbow Roll, Elbow Pitch, Wrist Roll, Wrist Pitch, and Toolplate Roll.

Since adjacent bodies are connected by revolute joints, one generalized coordinate is
assigned to each joint. The motion of this system can be described by seven generalized
coordinates; the dynamic system is thus formulated as a system of seven differential equations.
When a reference configuration is selected, a linearized model can be generated at this
configuration using the proposed linearization algorithm.

The configuration that is shown in Fig. 10 is selected as a reference configuration: the
angles of all the joints are zero (ql, q2 ..... q7 = 0), and the velocities of all the joints are also

zero (el1..... _ = 0). At this reference configuration, the linearized model that is obtained

from the recursive linearization algorithm is expressed as

E ']El°dx 0 - 1 dx + du ( 39 )
= M" P2 M P1 M-'P3

wherex=[ql q2 q3 q4 q5 q6 q7 Cll cl2 _ _ _ _ _]T, u is the actuating torque

vector, M is the generalized mass matrix that is expressed in terms of joint variables, and
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M-1P1 = 07x7

M-1 P2 =

-15.737 0 -1.607 0 -.1451 0 -.18e-8

0 15.228 0 2.8549 0 -.3485 0

.41697 0 9.2375 0 -.4480 0 -.13e-7

0 -11.44 0 -6.361 0 .5637 0

-29.11 0 3.711 0 21.533 0 .93e-7

0 -5.0345 0 -13.19 0 -15.76 0

14.914 0 5.9428 0 -25.38 0 -.58e-7

P3 =1

In this case, to generate a closed-form analytical expression for the tinearized model is
too difficult for accuracy checking even if the symbolic manipulation is employed. Instead, two
comparisons were derived to make certain that the linearized model in Eq. 39 accurately
represents the nonlinear model. In the first comparison, both the nonlinear and linearized
models were perturbed with the same amount, and then the resulted acceleration changes were
examined. In the second comparison, two linearized models-one obtained from the recursive

approach and the other obtained from the numerical perturbation method-are examined.
In the first comparison, perturbation of the generalized coordinate x by

10 s incurs the relative error of the acceleration changes between the linearized and
nonlinear model as

II dx* -dx 112
= 2.739 e-6

t

II dx 112 ( 4 0 )

where d_¢is the acceleration change obtained from the linearized model and dx* is obtained
from the nonlinear model.

In the second comparison, a simple numerical perturbation without any convergence
checking is implemented to generate a linearized model, which will serve as a reference in
comparing the recursive linearization with the numerical perturbation. Comparing the
linearized model obtained from the numerical method with those obtained from the recursive

approach, one can observe that at the given configuration both approaches generate nearly
identical linearized models, in which the relative difference is less than 10 s.

However, the recursive algorithm proves to be more efficient than the numerical
perturbation method. In comparison with the numerical perturbation method, the recursive
linearization took half the cpu time to generate a linear model, even though the numerical
perturbation method used here was a relatively simple one. If a convergence checking
algorithm was employed for the numerical perturbation method, it would take even longer to
generate a linear model.

The simple pole placement used in the previous example was used again to design a
linear regulator. The desired closed-loop poles were selected to make the simulation results
similar to the experimental results. After properly selecting the desired poles, we used this
linear regulator to control the nonlinear dynamic model. The step response of Joint 4 is shown
in Fig. 11. From this result, it is clear that a simple regulator based on a linearized model
simulates the behavior of a complicate control system around a reference configuration.

6. Conclusion

In these examples, we have shown that the proposed linearization algorithm is both
efficient and accurate in generating a linear model at given configurations. These linear
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models are converted to the standard state space forms, which are convenient for linear
control design. Moreover, the driving force input for a required motion around a given
configuration can be predicted by using the linearized model. When a large gross motion is
involved in a prescribed trajectory, more than one linearized model may be necessary for
robust control. In such a case, the computation of linearization must be fast enough to update
the linearized model before it fails to represent the system adequately. With the emerging
parallel processing computers and computation algorithm, the use of successive linearization
will be possible for on-line adaptive control.
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A b str act

The paper solves the problem of hinged multibody dynamics using an

extension of the innovations approach of linear filtering and prediction

theory to the problem of mechanical system modeling and control. This

approach has been used quite effectively to diagonalize the equations for

filtering and prediction for linear state space systems. It has similar

advantages in the study of dynamics and control of multibody systems.

The innovations approach advanced here consists of expressing the

equations of motion in terms of two closely related processes: (I) the

innovations process e, a sequence of moments, obtained from the applied

moments T by means of a spatially recursive Kalman filter that goes from

the tip of the manipulator to its base; (2) a residual process, a sequence of

velocities, obtained from the joint-angle velocities by means of an outward

smoothing operations. The innovations e and the applied moments T are

related by means of the relationships e = (I -L)T and T = (I + K)e. The

operation (I = L) is a ca'usal lower triangular matrix which is generated by a

spatially recursive Kalman filter and the corresponding discrete-step Riccati

equation. Hence, the innovations and the applied moments can be obtained

from each other by means of a causal operation which is itself causally

invertible. The residuals n and the joint-angle velocities q" are related by n

= (I - K*)q and q = (I - L*)n in which (I - L*) is also an anticausal, upper-

triangular, matrix. Hence, the residuals and the joint-angle velocities are

related by means of an anticausal operation which is itself anticausally

invertible. The use of the residuals process is of interest because it

diagonalizes the composite multibody system kinetic energy. In other

words, the kinetic energy J (_, q) in the system can be written as J = I/2n T

Dn in which D is a diagonal matrix. The Lagrangian equations of motion

that result from this diagonal form for the kinetic energy are completely

decoupled in the sense that the equation for the residual velocity at any

given joint is independent from the similar equations at all of the remaining

joints. The innovations process appears as a driving term in these

equations. Use of the innovations, in place of the physically applied joint

moments, decouples the equations even further. The equations of motion

for joint k involves only the value of the innovations at the same joint. The

final equations of motion are therefore diagonalized in the sense that the

equation for any given joint is independent from the equations at the other
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joints. The diagonal form of the equations of motion results in significant

simplification of dynamic analysis, simulation, stability analysis, and control

design. This simplicity is illustrated by arriving a very simple decoupled
control algorithms for robotic manipulator control.
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Abstract

An efficient O(mN) algorithm for dynamic simulation of simple closed-chain robotic mechanisms will

be presented in this paper, where m is the number of chains, and N is the number of degrees of
freedom for each chain. It is based on computation of the operational space inertia matrix (6 × 6)

for each chain as seen by the body, load, or object. Also, computation of the chain dynamics, when

opened at one end, is required, and the most efficient algorithm is used for this purpose. Parallel

implementation of the dynamics for each chain results in an O(N)+ O(log 2 re+l) algorithm.

I. Introduction

Recently, there has been an increasing interest in robotic systems with multiple chains forming simple

closed kinematic loops. Such systems of interest in space robotics applications include multilegged

vehicles, multiple manipulators, and dexterous hands. Each is characterized by multiple chains of

links (legs, arms, or fingers) in support of a body, load, or object. Real-time simulation of these
systems is important for remote operation, but difficult to achieve at present. An even greater

challenge to the computational engineer is that of super-real-time simulation, that is, planning seconds
of motion in milliseconds. This has been shown to be of value in the control of a multilegged vehicle

when predicting the action of the present control to ensure safety and stability along a planned

trajectory.

The fundamental goal of this paper is the development of an efficient algorithm for the dynamic sim-

ulation of the time-varying topological systems discussed above. Previous researchers have presented
algorithms for these and similar configurations based on equation augmentation [1], constraint prop-

agation [2], and recursive computation [3,4], but these methods are often difficult to apply and/or

computationMly inefficient. The new simulation algorithm derived here makes use of efficient com-
putations for the individual supporting chains to produce an efficient simulation method for the

complete robot system. The dynamic properties of each chain are described in a simple, physically
understandable manner, which facilitates the straightforward analysis of the combined dynamics of
the entire mechanism.

Multiple chain robotic systems can take many forms, sorae of them quite complex. Simple closed-
chain mechanisms are a subset of multiple chain systems with specific structural characteristics. The

structure of a simple closed-chain mechanism is characterized by m actuated chains which support a

single common reference member [1]. A supporting chain is identified as an independent functional
unit in the closed chain system which has two ends, each terminated by a single link. Each chain

may have an arbitrary number of links and degrees of freedom, and closed kinematic loops within

a chain are permitted. The removal of the reference member breaks the closed loops formed by the

multiple chains.
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There are two basic types of simple closed-chain mechanisms called Type 0 and Type 1, respectively

[1]. These two types are defined based on the nature of the interactions which occur between the
links of each chain and the reference member or support surface. Figure 1 illustrates a typical Type

0 mechanism which may be used to model multiple manipulators or dexterous hands. Note that the

support surface, shown here as a fixed inertial frame for a multiple manipulator configuration, might

also represent the moving "palm" of a dexterous hand. In either case, for a Type 0 mechanism, the

base link of each chain is connected to the support surface by an actuated joint structure, while the

last llnk interacts with the reference member through an unpowered contact. Figure 2 illustrates a

Type 1 simple closed-chain mechanism which may be used to model multilegged vehicles. For a Type

1 mechanism, the last link of each chain interacts with the support surface through an unpowered

contact, while the base link is connected to the reference member by an actuated joint structure. For

both Type 0 and Type 1 mechanisms, the reference member (object, load, or body) is numbered 0,

while the chains are numbered arbitrarily from 1 to m. Chain k (k = 1,..., m) has Nk degrees of

freedom, where Nk may be less than, equal to, or greater than 6.

In order to apply the same algorithm to both types in this work, the support surface will be considered

to act as the "base" of each chain. We will refer to the terminal link which interacts with the support

surface as link 1, and the terminal link which interacts with the reference member will be called the

last link or end effector (link N). The far end of link N is the "tip" of the chain. The interactions

and connections which occur between bodies or links in the system (including those at the support

surface and at the reference member) will be described using the general joint model of [5,6]. This
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includes both powered joint structures and unpowered contacts. The motion of the support surface
is assumed to be known.

In this paper, an O(mN) recursive algorithm for the dynamic simulation of simple closed-chain
mechanisms is derived for m chains with N degrees of freedom each. The algorithm is based on the

efficient computation of the (6 × 6) operational space inertia matrix [7] for each chain as seen by the
body, load, or object. The operational space inertia matrix, A, may be used to obtain the net effect

of the chain dynamics at its tip. The computation of the chain dynamics when the chain is open

at one end is also required, and the most efficient algorithm is used for this purpose. Given O(N)

algorithms for these two fundamental computations for each chain [4,5,8,9], an O(mN) algorithm for
the simulation of the entire multiple chain system is formulated.

In the next section, the notational and modelling conventions used in the formulation of the new

algorithm are summarized. In the third section, the dynamic properties of the individual supporting
chains and the common reference member are discussed, and the appropriate dynamic equations

are developed. The operational space inertia matrix and the open-chain dynamics of each chain

are of special significance in this discussion. In the fourth section, the O(mN) dynamic simulation

algorithm for simple closed-chain mechanisms is derived. The final algorithm is presented as a series

of five steps, which are summarized in a convenient tabular form. The computational requirements
of the new algorithm, including parallel implementation considerations, are presented in the fifth

section. Finally, the results of this work are summarized and some overall conclusions are given in
the final section.

II. Notation

Many of the notational conventions used in this paper are based on concepts introduced by Roberson
and Schwertassek in [6] and used by Brandl, Johanni, and Otter in [5]. They are similar in many

ways to those described by Featherstone in [9] for robot dynamics, although there are a few minor
differences. As in each of these, spatial notation will be used to develop the dynamic equations for

the chains and reference member. With spatial notation, velocity, acceleration, and force vectors are

all 6 x 1 column vectors, where each incorporates the appropriate linear and angular components. In

this paper, the spatial velocity of the reference member, v0, is written:

vo= [ ( o)z(vo) (vo) ( o)z]r, (I)

where (wo)z,(wo)y,and (wo)z are the components of the angular velocityof the referencemember

about _, _, and _.,respectively,usuallyresolvedinthe referencemember frame (frameO) oran inertial

coordinatesystem. The threecomponents, (vo)x,(Vo)v,and (vo)z,representthe linearvelocityofthe

coordinateoriginof frame 0. Similarly,the spatialaccelerationofthe referencemember isexpressed

as:

(.o)x (a0)z ]r, (2)

where the individual components now correspond to resolved angular and linear acceleration vectors.

Spatial force vectors have a corresponding structure:

fk= [ (nk)_ (nk)v (nk)_ (h)_ (h)_ (h)_ ]T, (3)

where, in this case, fk will be used to represent the spatial force exerted on the reference member

by chain k. The first three components, (nk)x, (nk)_, and (nk)z, represent the elements of a three-
dimensional moment vector, while (h)_, (h)y, and (h)_ are the elements of a three-dimensional

force vector.
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In general, the transformation of a spatial velocity or acceleration vector from one coordinate system

to another one may be accomplished by the following spatial multiplication [9]:

Jp = Jxi _p, (4)

where _p is the vector expressed with respect to the ith coordinate system, Jp is the same vector

expressed with respect to the jth coordinate system, and Jxi is the 6 × 6 spatial transformation

matrix. This spatial transformation is defined as follows:

JX,=[ JA, O ]JAil_ T JAi ' (5)

where JAi is the 3 x 3 rotation transformation between the two coordinate systems, and bj is the

3 x 1 position vector from theorigin of frame i to the origin of frame j, with components expressed

in frame i. The 3 x 3 matrix, b j, is an anti-symmetric matrix defined by the rule:

a = c3 0 -Cl . (6)
--C2 El 0

In spatial notation, inertia matrices axe also expressed as 6 x 6 matrices. An inertia matrix may be

defined for each individual link of a chain, as well as the reference member, in its own corresponding
coordinate system. For the reference member, this matrix, I0, is represented as follows:

io rio ]Io= rioT M0 ' (7)

where M0 is a 3 × 3 diagonal matrix of the mass of the reference member, and I0 is the 3 x 3 moment

of inertia tensor at the origin of coordinate frame 0. The matrix I0 is symmetric and positive definite,
but not necessarily diagonal. The 3 x 3 matrix, h0, is equal to m0§o, where m0 is the mass of the

reference member, and So is the position vector of the center of gravity of the reference member from

the coordinate origin of frame 0. Because I0 and so axe defined in coordinate system 0, the matrix
I0 is constant.

To include general joints and contacts with multiple degrees of freedom in a multibody system, an

extended model of the interconnections and interactions between individual bodies of that system is

required. In this paper, the general joint model of Roberson and Schwertassek [6] is used for this
purpose. This model is also used by Brandl, Johanni, and Otter in [5].

Briefly, each interconnection and/or interaction between two bodies in a simple closed-chain mecha-

nism, hereafter referred to as a "general joint", is described in terms of two orthogonal vector spaces,
¢ and ¢c. The matrix ¢ is of dimension 6 × n, where n represents the number of degrees of freedom

of the general joint, and it has full column rank. It represents the free modes of the joint, and its

columns make up a basis for this free vector space. We will refer to ¢ as the morion space of the
general joint. The matrix ¢¢, which is 6 x (6 - n) and also of full rank, represents the constrained

modes of the general joint. It is orthogonal to ¢, and may be called the constraint space of the joint.
Both ¢ and ¢c are usually resolved in the joint frame, and thus, they are both constant.

III. Dynamic Properties of Individual Chains and Reference Member

Each chain in a simple closed-chain mechanism is governed by the dynamic equations of motion for
a single chain. For chain k, k = 1,..., m, these are:
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rk = Hk/tk + Ck dlk + Gk + jT fk, (8)

where

qk, dlk,/tk =

Hk =

Ck =

Gk =

Jk :

and fk is the (6 × 1)

Nk x 1 applied general joint torque/force vector,

Nk × 1 general joint position, rate, and acceleration vectors,

Nk X Nk joint space inertia matrix,

Nk x Nk centripetal/Coriolis matrix,

Nk x 1 gravity vector,

6 x Ark Jacobian matrix,

spatial force vector exerted by chain k on the reference member.

Note that Hk, Ck, G}, and Jk are functions only of the general joint position and rate vectors, qk

and dlk, respectively. Recall also that the "base" of each chain is the support surface, and the "tip"
of each chain touches the reference member. The components of qk and rk correspond to the general

joints of each chain, starting with the joint between link 1 and the support surface and ending with

the joint preceding link N. The basic unknowns in Eq. (8) are the general joint accelerations, iik,
and the components of the force vector, fk, in the constrained directions of the general joint at the

tip of chain k.

We may use the dynamic equations of motion to partition the joint acceleration and spatial tip
acceleration vectors of each chain into the difference of two terms, one known and one unknown. For

each chain, we may write [11]:

clk = (iik)o_n- (H;1JT)fk, (9)

= (£1k)o_n - 12k fk, (10)

where (ftk)op_n is the vector of joint accelerations for chain k in an open, unconstrained configuration

(fk = 0), and flk is a function of the joint positions for chain k. Likewise, for irk, the tip acceleration
for each chain:

xk = (YCk)op_,_-- (Jk H_-lJT)fk, (11)

= (xk)o_n -- Ak-lfk, (12)

where (xk)open is the spatial tip acceleration vector for chain k in an open, unconstrained configu-

ration, and A_-1 is the inverse operational space inertia matrix for chain k, defined at the tip of the

chain [7,11].

The open-chain terms, (iilk)or, en and (xk)open, are completely defined for each chain given the present
state joint positions and rates, qk and elk, the applied joint torques/forces in the free directions, vk,

and the motion of the support surface. An appropriate open-chain Direct Dynamics algorithm may

be used to calculate these terms. The O(N) recursive algorithms of [5,10] are very efficient for this

computation, and the linear order of computation is highly desirable. Because the joint positions
are known, f_k and A_ 1 are also defined. Efficient algorithms for i2k and Ak 1 for a single chain are

derived in [11], including an O(N) recursive algorithm which is the most efficient for N > 6.

The dynamic behavior of the reference member may be described using a spatial force balance

equation for that body. The sum of the spatial forces exerted by each chain on the reference member
and any other external spatial forces (including gravity) are equal to the resultant force on the

reference member. Using spatial notation, we may write the force balance equation as follows:
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m

Fo = % + go, (13)
k=l

where

F0

°f k

and

go

= 6 x 1 resultant spatial force vector applied to the reference member,

= 6 x 1 spatial force vector applied by chain k to the reference member,

= 6 × 1 external spatial force vector applied to the reference member

(including gravity).

Each force term in Eq. (13) is defined with respect to the coordinate frame attached to the reference

member (frame 0). Applying the basic Newton-Euler equations, we may also write the resultant
vector, Fo, as follows:

Fo = Ioao+voXIovo,

= Ioao + bo,

where

Io =

ao

v 0

(14)

(15)

6 × 6 spatial inertia of the reference member,

6 x 1 spatial acceleration of the reference member,

6 × 1 spatial velocity of the reference member.

Both v0 and ao refer to the motion of the coordinate origin of flame 0. The spatial inertia matrix,

I0, is also defined at this point, and it is known and constant. Because v0 is given for the present

state, the velocity-dependent term, b0, is known. If we combine Eqs. (13) and (15), we finally obtain

the following dynamic equation for the reference member:

m

_°fk +go = Ioa-0 T b0. (16)
k=--.1

In this equation, the basic unknowns are ao and the components of °fk in the constrained directions

of the general joint at the tip of chain k.

IV. Multiple Chain Algorithm

In developing an efficient algorithm for the dynamic simulation of simple closed-chain mechanisms,

we are naturally led to consider the relationship between the physical structure of the robotic sys-

tem and the computational structure of the desired algorithm. Intuitively, it seems apparent that
the structural parallelism present in a simple closed-chain mechanism should lead to computational

parallelism in the solution of the Direct Dynamics problem for that mechanism.

More specifically, in a simple closed-chain mechanism, the m actuated chains act on the reference
member in parallel, and their motion is coupled with that of the reference member. If the reference

member is removed, the chains may function independently. Computationally, the physical removal

of the reference member corresponds to solving for the forces which are exerted on it by each chain.

Once these forces are known, the system is equivalent to a group of independent chains with known

tip forces. The joint accelerations may then be computed for each chain separately. Given enough

processors (one per chain), the computations for each chain may be carried out in parallel.
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We will illustrate the basic methodology of the new simulation algorithm by first examining a simple

special case. Consider m manipulators rigidly grasping a common object. Each manipulator has six

degrees of freedom, and no chain is in a singular position. For simplicity, we will express all of the
relevant equations in absolute coordinates. Because each chain tip is rigidly attached to the reference

member, we may write:

JCk ---- a0

for each chain k, k = 1,...,m.

given in Eq. (12), takes the form:

ao = (_k)op_ - A_-_fk-

(17)

Thus, the operational space dynamic equation for each chain, as

(18)

Because no chain is in a singular position, and each chain has a full six degrees of freedom, Ak is

defined [11]. We may, therefore, solve for the spatial tip force exerted by chain k on the reference

member, fk, as follows:

fk = hk [(Jek)op_,_ - a0]. (19)

With this equation we have established an explicit relationship between the spatial tip force, fk, and

the spatial acceleration of the reference member, a0. This expression may be used in the reference
member dynamic equation, given in Eq. (16), to obtain:

_n

ao] = Io o + b0- So. (20)
k=l

The only unknown in Eq (20) is ao, the spatial acceleration of the reference member. Collecting

terms, we may write:

I0 + Ak a0 = Ak (Xk)ove_ - b0 + go • (21)
k=l J Lk=l

We may now solve for ao from this linear system of algebraic equations using any linear system
solver. Note that the characteristic matrix is just the sum of the operational space inertia matrices

of the individual chains and reference member, and is only 6 x 6. With rio known, we may also

solve explicitly for the spatial tip force fk, k = 1,... ,m, using Eq. (19). Thus, the motion of the
reference member and the spatial force exerted at the tip of each chain are completely defined. The

simple closed-chain mechanism is effectively decoupled. Each manipulator may now be treated as

an independent chain with a known spatial tip force. The joint accelerations for each chain may be

computed separately using an appropriate Direct Dynamics algorithm and then integrated to obtain
the next state.

The method outlined above is quite straightforward. Of course, the illustrated example represents a

special case. We will now develop a similar approach for a general simple closed-chain mechanism.

Consider a mechanism with m chains, each with an arbitrary number of degrees of freedom, N. The

interaction between each chain tip and the reference member is arbitrary and will be modelled using
the general joint model of [6]. To begin, we will derive an exphcit relationship between the spatial

acceleration of each chain tip and the spatial acceleration of the reference member. The spatial

acceleration of the tip of chain k is denoted by J_k. The relative spatial acceleration between the tip

of chain k and the reference member, x_, resolved in the orthogonal vector spaces of the general joint
between them, may be written:

(22)
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where(¢)k and(¢C)kaxethemotionspaceandconstraint space of the general joint at the tip of chain

k, respectively. The quantities ak and ag are the corresponding components of relative acceleration

in the free and constrained directions. For each chain, (¢)k, (¢C)k, and a_¢ are known, while ak is

unknown. The sum of xk and _ is just the spatial acceleration of the reference member on the far
side of the general joint between it and chain k, a_. Thus, we may write:

= xk +x_, (23)

= _k+ (¢)k_k + (¢% _7,. (24)

We may also express aok in terms of the spatial acceleration of the reference member, ao, as follows:

= x0__0+ ¢0_, (25)

where X0k - Nx0k is the spatial transformation between coordinate frame 0 and the coordinate frame

associated with the general joint at the tip of chain k. The quantity (ok is the 6 x 1 bias acceleration

vector which is a function of the position and spatial velocity of the reference member. Because the
present state of the entire system is given, both X0_ and (ok are known.

Equating the two expressions above for a_, we obtain the following:

_k + (¢)k_k+ (¢°)k_ = x0k_0+ _ok. (26)

This equation matches the spatial accelerations at the coupling point between chain k and the refer-
ence member, giving an explicit relationship between xk and a0 when the coupling is arbitrary. The

basic unknowns in Eq. (26) are xk, ak, and a0. All other vectors and matrices may be computed

rather simply from the initial information given for the simulation problem.

To decouple the chains and the reference member, we need an explicit mathematical relationship
between the spatial force exerted by chain k on the reference member, fk, and the spatial acceleration

of the reference member, ao. Equation (26) relates the spatial acceleration of the reference member
and the spatial acceleration of the tip of chain k. We may eliminate ak, the unknown components

of the relative acceleration, by projecting Eq. (26) onto the constraint space of the corresponding
general joint as follows:

(¢o)kr [_k+ (¢)k_ + (¢°)__] = (_°)_ [x0__o+ _ok]. (27)

By definition [11]:

and

(¢%r (¢)k = 0, (28)

(¢%r (¢% = 1. (29)

Thus, we may write:

(¢o)kr T a_ = (¢c)T [Xokao ÷ _ok]. (30)iik

Equation (12) defines _k in terms of the desired force vector, fk. If we combine Eqs. (12) and (30),
we obtain:

(¢_)T [(_Do,_- -- A_-lfk] = (¢¢)T [Xokao + (ok] _ a_, (31)

or
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[(_,;,]f,=[_-(_o__+(¢)_(_,_o_oo]-[(_°)_Xo_]_. /3_)
The first bracketed term on the right side of Eq. (32) is completely known. The only unknowns in

this equation are the constraint components of the force vector, fk, and the spatial acceleration, a0.

We may now pursue an explicit relationship between these two vectors.

Like the relative acceleration vector, fk may also be resolved in the orthogona] vector spaces of the

general joint at the tip of chain k as follows"

f} = (¢)k hk + (¢c)k h_, (33)

where hk is the vector of known force components in the free directions, and h_, is the vector of

unknown force components in the constrained directions. Combining Eqs. (32) and (33), we obtain:

(¢c)_A;' [(¢)_h_+ (¢_)_h_,] = [_, - (eft _o_+ (¢_)_(_)o_o-]

- [(¢)_x0_]_,. (_
If the spatial acceleration of the reference member is known, we may find an explicit solution for the
unknown force components at the tip of chain k from the following set of linear algebraic equations:

- [(_Xo_]_o, (_
= Sk - [(¢c)T X0k] ao, (36)

where Sk is known. Even when a0 is unknown, we may still find a solution for h_, in terms of the

unknown ao. The solution will have the following form:

h_, = Mk [Sk- (¢¢)Tx0 ka0], (37)

= MkSk--[Mk(¢c)Tx0 k] a0. (38)

If (n_)k is the number of degrees of constraint for the general joint at the tip of chain k, then Mk is
the (nc)k x (n_)k transformation matrix which solves for h_. By carefully considering the rank of the
coefficient matrix, this general solution can still be used for a chain in a singular position or a chain
with less than six original degrees of freedom [11]. This solution procedure requires O[(nc)_] scalar

operations.

Note that if chain k is rigidly grasping the reference member, then the constraint space for this

general joint, (Co)k, is the 6 x 6 identity matrix. In this case, also note that a_, and hk are identically
zero for each chain. If chain k has six degrees of freedom and is not in a singular position, then Mk

will be exactly equal to Ak, the operational space inertia matrix for chain k, and the solution for h_,

will be:

h_, = Ak [Sk- X0_a0] • (39)

This solution corresponds to the simple example discussed at the beginning of this section, but now

expressed in local coordinates.
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Giventhe generalsolutionfor hi in Eq. (38), theforcevector,fa, maynowbewritten:

fk = (¢)kha + (¢_)khl,

= [(¢)khk q-(¢_)kMaSk]-[(¢_)kMk(¢_)Txo k] 8-0,

= Pk--R.kao,

(40)

(41)

(42)

where Pk and Rk are of dimension 6 x 1 and 6 x 6, respectively, and both may be computed from
known quantities. We now have an explicit equation relating the force vector exerted by chain k
and the spatial acceleration of the reference member. We may combine this information with the

dynamic equation for the reference member to solve for ao explicitly.

The dynamic equation for the reference member given in Eq. (16) may be rewritten as follows:

m

E(Xok)Tfk + g0 = Ioao + bo. (43)
k=l

where fk is the spatial force exerted by chain k on the reference member, expressed in the coordinate

frame of the general joint at the chain tip. If the expression for fk in Eq. (42) is used in Eq. (43), we
obtain:

m

E(X0k)T(vk -- Rkao) = Ioao + bo - go. (44)
k=l

Summing like terms, we may write:

I0+ X a0= X -b0+g0 , (45)
k=l

or, expanding R_,

[- ] ]Io+ _-'_(x_)T(¢c)kMk(¢c)_(X_) _= (Xok)rpk--bo+g0 • (46)
k=l

In Eq. (46), the 6 x 1 spatial acceleration vector of the reference member, ao, is the only unknown.
We may find a solution for ao from the given set of linear algebraic equations using any efficient

linear system solver. Because the required system solution always involves a 6 x 6 coefficient matrix,
the computational cost of solving for a0 is constant.

The coefficient matrix of a0 in Eq. (46) represents the combined inertial properties of all the chains

and the reference member. The inertial properties of each chain are first projected to the tip of that
chain by computing the inverse operational space inertia matrix, Ak 1. Along the free directions of

the general joint which connects the chain tip and the reference member, the projected inertia of the

chain is not felt by the reference member. Along the constrained directions of the joint, however, the

corresponding components of A_-1 are reflected across to the reference member. These components,
spatially transformed to the coordinate origin of frame 0, are combined with the spatial inertia of
the reference member, I0. This combination represents the effective operational space inertia of the
simple closed-chain mechanism defined at the coordinate origin of frame 0. It is the effective inertia

"felt" by the reference member in the present state. The bracketed term on the right side of Eq. (46)
represents the spatial forces which act on the reference member at the given instant.

Once the spatial acceleration of the reference member is known, the spatial force vector applied by

chain k to the reference member is defined by Eq. (42). That is, with a0 given, we may compute fk
as follows:
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fk = Pk - Rk so. (47)

Recall that fk is defined with respect to the coordinate frame of the general joint between chain k
and the reference member. The explicit knowledge of fk allows us to treat chain k as an independent

chain with a known tip force. We may now solve for the general closed-chain joint accelerations for

chain k using Eq. (10), repeated here for convenience:

qk = (elk)open - ak fk. (48)

The application of Eq. (48) to every actuated chain in the simple closed-chain mechanism results in a

complete solution to the Direct Dynamics problem for this robotic system. The next state positions
and velocities may be computed by integrating the appropriate quantities for each chain and the

reference member. As discussed in [11], small amounts of negative position and rate feedback may

be employed to counteract the drift which is a result of the integration process, and which would
violate the kinematic constraints.

The algorithm developed here for simple closed-chain mechanisms may be presented as a series of

five steps. They are as follows:

1. The Open Chain Solution,

2. Calculation of the Spatial Acceleration of the Reference Member,

3. Calculation of the Spatial Chain Tip Forces,

4. Calculation of the Closed-Chain Joint Accelerations,

5. Integration for the Next State.

The fundamental computations required in each of these steps are summarized in Table 1. In Step 1,
the Direct Dynamics problem is solved for each chain of the mechanism assuming that the reference
member has been removed and each chain is in an open, unconstrained state. The general open-chain

acceleration vectors, (_lk)op_n and (_¢k)op_,_, are computed for each chain, along with the position-

dependent matrices, _k and Ak 1. In Step 2, Eq. (45) is used to find an explicit solution for ao,
the spatial acceleration of the reference member, via linear system solution. The quantities (Mk Sk)

and [Mk (¢c)T X0k], required for both Pk and/tk, are computed in the determination of the explicit
relationship between h_ and a0. This relationship is found by linear system solution using Eq. (36),
with the solution taking the form of Eq. (38). In Step 3, this solution is used in Eq. (47) to solve

for the spatial force vector exerted on the reference member by each chain. In Step 4, the general
closed-chain joint accelerations are computed for each chain using Eq. (48), given the spatial tip force

vector. In Step 5, the appropriate rates and accelerations are integrated to obtain the next state

positions and rates for the system.

Note that the first step may be carried out for all chains in parallel, if enough processors are available

(one per chain). Once the second step is complete and a0 is known, the third, fourth, and fifth
steps may also be carried out for all chains simultaneously. Thus, taking advantage of the structural

parallelism inherent in the simple closed-chain system has led to parallelism in the computational
structure of the simulation algorithm.

V. Computational Requirements

We will now consider the computational requirements of the dynamic simulation algorithm for simple

closed-chain mechanisms. First, the number of scalar operations required for each chain of the

mechanism will be tabulated, followed by the number of operations required to compute the spatial
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Table 1: Dynamic Simulation Algorithm for Simple Closed-Chain Mechanisms

Given: a_, hk, (_bc)k, (_b)k, and with

Xok, b0, go, (ok determined from the reference member state;

Step 1.

Step 2. Solve for ao:

with

Vk =

Rk =

Sk =

Compute (qk)oren, (J[k)or_n, rtk, and A -1"k , k= 1,...,ra.

ao = X -bo+go ,

[(¢)k hk + (_bc)k Mk Ski,

[(_bc)k M_ (q_c)_ Xok] ,

a_ - (d_c)_ [(ko -(fC_)opc,_ + A;' (_b)k ha],

and where (Mk Sk) and [Mk (_) T Xok] are determined by the solution of:

r/(_c'_T A-1 ((_c)k ] h_ Sk [(_)_ Xo_] ao.(M_ 1)hg= [q, _k k = -

Step 3.

fk

Step 4.

Step 5.

Solve for fk; k = 1,..., m:

= Pk - Rkao.

Solve for/ik; k = 1,...,m:

= (_lk)open--nkf k.

Integrate to obtain the next state positions and rates for the system.
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Table 2: Computations Per Chain in the Simple Closed-Chain Dynamic Simulation Algorithm

#Muir. #Add.

Calculation #Mult. #Add. (N = 6, nc = 3) (N = 6, nc = 3)

(topen *Xopen

ft,h -1

P,R

xTp, XTR

f

TotM:

250N - 182

400N - 621

36n_ + 20

36

6N

656N - 767

+46)

220N- 167

320N - 528

36nc -- 24

36

6N

546N -- 659

+(_ne 3 + 6no 2 + 36_ne -- 14)

1318

1779

105

128

36

36

3402

1153

1392

71

84

36

36

2772

acceleration of the reference member. The computational complexity of the complete algorithm will

then be discussed, and the parallel implementation of this algorithm will be considered.

Table 2 lists the number of scalar operations (multiplications, additions) required in the simulation

algorithm for each chain of a simple closed-chain mechanism. The operations are tabulated for the

case of an N degree-of-freedom serial-link chain with simple revolute and/or prismatic joints only.

The O(N) Direct Dynamics algorithm of [5] is used to compute the open-chain terms, i_op,_ and

J_ope,_. The O(N) Force Propagation Method of [11] is used to compute ft and A -1. All/tom,_, Xope,,,
fl, and A -1 are computed in Step 1 of the simulation algorithm.

In Step 2 of the simulation algorithm, the spatial acceleration of the reference member is calculated
using Eq. (45). For this task, xTp and xTIt must be computed for each chain. The number of

operations required to compute P, It, xTp, and xTIt are also listed in Table 2. In this case, the

number of operations is a function of the number of degrees of constraint at the general joint between
the chain tip and the reference member (no). This number can never be greater than six. The

computational complexity of these calculations is O(n3c) due to the linear system solution required

in the computation of both P and tt (see Table 1).

The spatial force vector, f, exerted by each chain on the reference member, and the closed-chain joint
accelerations for the chain, iil, are calculated in Steps 3 and 4 of the simulation algorithm, respectively.

The appropriate equations are given in Table 1. The operations required to calculate these vectors
complete the table. The operations required for the spe(:ial case of N = 6 and nc = 3 are given in
the last two columns of Table 2. This value of nc could correspond to a hard point contact between

a manipulator tip and surface of a load object when the tip is not slipping.

Given the computations required for each individual chain, the number of scalar operations needed

to compute the spatial acceleration of the reference member, a0, is given in Table 3. Equation (45)
is used to obtain the solution, which requires O(m) spatial additions and a single 6 × 6 symmetric

linear system solution. Thus, the number of operations required for ao is a function only of m, the
number of chains in the simple closed-chain mechanism. The example of three chains (m = 3) is

given in the last two columns of this table.

To determine the total number of scalar operations required to simulate the entire simple closed-

chain mechanism, the number of operations required for a single chain is simply multiplied by m,
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Table3: Computationsfor the SpatialAccelerationof the ReferenceMember

#Mult. #Add.

Calculation #Mult. #Add. (m = 3) (m = 3)

ao 86 27m + 71 86 152

the number of chains, and added to the computations required for a0 for the same number of chains.

Thus, the computational complexity of the complete simulation algorithm is O(mN) for a given value
of nc _< 6.

The total computational complexity discussed in the previous section only considered the execution of

the simulation algorithm on a single processor. In order to speed up the simulation, parallel processing

may be investigated. If a single processor is used for the entire system of m chains, the computational

complexity of the simulation algorithm is O(mN) for a given ne _< 6. Given a0, all computations for
each chain may be carried out independently. Thus, if m processors are available, the computational

tasks associated with each chain may be performed in parallel, and the computational complexity
of the operations required for the m chains may be reduced to O(N). Of_ourse, the computations

required to compute a0 must also be considered. These operations may also be implemented in

parallel on the m available processors. Equation (45) requires O(m) spatial additions to compute ao.
On (m + 1)/2 parallel processors, this task may be carried out in O(log2m+ 1) operations by using

the recursive doubling approach [12]. Thus, on m parallel processors, the computational complexity

of the entire dynamic simulation algorithm may be reduced to O(N)+ O(log2m+l ).

VI. Summary and Conclusions

In this paper, a general and efficient dynamic simulation algorithm for simple closed-chain mechanisms
was derived. The algorithm is applicable to both Type 0 and Type 1 mechanisms. Both types of

mechanisms are modelled in a convenient and general manner through the use of the general joint

concept. The operational space inertia matrix of each chain is used to project the dynamic properties

of the chain to its tip where it is coupled to the reference member. By combining the operational
space inertia of each chain with the model of the general joint at each chain tip, a solution may be

found for the spatial acceleration of the reference member and the spatial force vector exerted on it

by each chain. Once the force vectors are completely defined, the system is effectively decoupled,
and the joint accelerations for each chain may be computed separately.

The computational complexity of the new simulation algorithm is O(mN) when implemented on a

single processor. The linear dependence on N is a significant improvement over previous simulation

algorithms such as that presented in [1]. The computational complexity of the new algorithm may
be further reduced to O(N) + O(log_m+l) if it is implemented on m processors in parallel.
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Abstract

The dynamic equations of motion of an n-body pendulum with spherical joints are derived to be a mixed system

of differential and a/gebra/c equations (DAE's). The DAE's are Irept in implicit form to save arithmetic and
preserve the sparsity of the system and are solved by the robust implicit integration method. At each solution
point, the predicted solution is corrected to its exact solution within given tolerance using Newton's iterative
method. For each iteration, a//near system of the form .lAX = E has to be solved. The computational cost for
solv/ng th/s linear system directly by LU factorization is O(nS), and it can be reduced significantly by exploring
the structure of J. This paper shows that by recogn/zing the recursive patterns and exploiting the sparsity
of the system the multiplicative and additive computational costs for solv/ng JAX = E are O(n) and O(n2),
respectively. The formulation and solution method for an n-body pendulum is presented. The computational
cost is shown to be nearly linearly proportional to the number of bodies.

1 INTRODUCTION

The general modeling and formulation of an open-chain multi-body system with spherical joints was presented
by Chou, Singhal, and Kesavan in 1986 [1]. In this paper, we are interested in a single open kinematic chain
without branching which is a special configuration of a general open-chain system. Much attention was paid to
this open-chain system by researchers, such as Armstrong [2], because the system is simple and its configuration
is similar to robot arms. In Armstrong's work, he presented an O(n) algorithm for the computation of robot
forward dynamics. However, in the conclusion of his paper he stated that his program worked only for the
joints with three degrees of freedom (i.e., spherical joints). He also claimed that his algorithm can be enhanced
to include prismatic and revolute joints. In the author's opinion, once we have joints which possess less than
three rotational degrees of freedom connecting two bodies, the bodies are rotationally dependent. In this case,
the equations of motion can not be decoupled easily, and we may not be able to find an O(n) algorithm for the
complete calculation of robot forward dynamics unless we use very simple and primitive integration methods
or other techniques such as parallel computing. In other words, if we use an unreliable integration routine we
may get invalid solutions.

A series of n rigid bodies joined sequentially by spherical joints form an n-body pendulum. The bodies are
allowed to rotate freely in space, but the motion of translation between adjacent bodies is constrained by the
joint. This sequence of bodies can swing in any direction with one end fixed at the ceiling through a spherical
joint. Here, we derive the equations of motion of this pendulum in the form of a mixed set of differential and
algebraic equations (DAE's) and solve the equations using the robust implicit integration method developed by
Petzold [3,4]. The DAE's are kept in implicit form to save arithmetic and preserve the sparsity of the system.
At each solution point, the predicted solution is corrected to its exact solution within the given tolerance using
Newton's iterative method. For each iteration, a linear system of the form JAX = E has to be solved. The
computational cost for solving this linear system directly by LU factorisation is O(nS). In order to reduce
computations, we explore the structure of J and take advantage of the system sparsity. This paper shows that
by recognizing the recursive patterns and exploiting the sparsity of the system the multiplicative and additive
computational costs for solving ./AX = E are O(n) and O(n2), respectively.
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2 MATHEMATICAL MODEL

An n-body pendulum was modeled with graphs by Chou and was presented in [5]. Based on this graph-theoretic
model, the mathematical model was derived as a set of DAE's and was written symbolically as

[E(x,x,0 = o] (1)
where the vector of unknown variables is

X : [R[ V[ P[ S[ ]T (2)

The vectorsRb and Vb are the collectionofdisplacementsand velocitiesofallthe bodies,and the vectorsPb

and Sb are the orientation parameters (we use Euler parameters here) and their derivatives. The superscripts
"u" and "v" indicate the dependent set and the independent set, respectively. The equations include the

following six sets of equations:

/'GCn_, P,,0

z- l "l_(Pb,0 : 0
/ "I2(P_' Sb, t)

L "I3(P_, s_, t)

and they are a total of 14n scalar equations in 14n unknown variables.

(3)

3 SOLVING THE FULL SYSTEM

At each solution point, we can solve the system equations E directly, using the implicit integration method

[3,4] where the predicted solution is corrected to its exact solution within a given tolerance using Newton's
iterative method. For each iteration, a liner system

[JAX=E]

has to be solved by LU factorization.The matrix J isthe system Jacobian matrix which isspecifiedby the

formula given by Petzold [4].The vectorsAX and E are the vectorsof correctionsand residuals,respectively.
Lettingthe Jacobian ofan implicitfunctionF with respectto the variableV be Fv, we can writethe Jacobian

matrix J and the vectorsAX and E ofthe fullsystem symbolicallyas follows:

k tG

o 'i_,v *&s- 'd_s, '&p. 'GP" I AVb

o o o o I I ",'
0 0 0 0 / "I*1
0 "Fv "Fs. "Fs. "Fp. ["_bJ L"_P-FJ

(4)

Solving the full system means that the system is solved by implicit integration in which the full linear system,
JAX = E, is solved by LU factorization without reducing its size. However, some structural information in J
and E can be utilized to reduce computations when they are evaluated.

3.1 Recursiveness and Special Structures

Some equations in E possess recursive properties which can be further utilized to reduce computational cost.
This recursive nature also causes the sub-matrlces in J to have special structures which can be exploited to

minimize the computational cost.

3.1.1 Translational Kinematic Constraints tG

In [5], the translational kinematic equations were derived as

i

tGi ------Rbl - RsF, - .¢J4rl 4-ZAiak = 0 (5)
k=l
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Let

x, = E_=lA_akx_ = A_a_
Ao=0

then, (5)becomes tGi - Rb, - R,?s - Airi + A_ = 0, or recursively

tGi _: R,, -- It,p, - A_ri -I- (Xi_x-t-x_) = 0 (6)

When we evaluate the residual vector tG, we only have to compute Rb_, R,?I, A/ri, and xi for i : 1, ...,n
once. Instead of computing A_ for each equation, we only compute x_ and add the previous Ai_l; that is,
A_ = A__x + x_.

The Jacobian entries corresponding to the equation tG are tG R and tGp. The Jacobian of tG correspond-
ing to 1_ b can be shown to be s unit matrix easily. Here we show that tGp has a special structure. It is written
as

O P's 0 pb_

o p,_ o p,, o p,.
tGP ---- 0P, -- • . "'. . (7)

O'G_ 0'G. olG_
p_7,. pT_T,. ' pTp-_,.

Since tG i is a function of pb_, p_, ..., and Pb,, for each row i (i = 1, ...,n) we have

0 tGi
= o; &=i+l,...,n (8)

0 p_,,.

The matrix in (7) becomes

tGp _=

0 0 ..- 0

o ... o
a p._

: : : ".. :
O'G. o'G. a'G. t_tG_
pT_,, p_,, p_-_:,, ... p_,.

(9)

and it is a blocked lower-triangulax matrix. Each blocked entry is a 3 x 4 matrix. The entries in each column
i (i : 1, ..., n) in (9) are derived, in Appendix D.1 in [5], as

= 2EL - 2Ei ri

2E_ k = i + 1, n
a p._ ' "• •,

(10)

Hence, (9) becomes

tGp :

2Ex(;-.x - _x) 0 0 ... 0

2Ex ix 2E2(7.2 - _2) 0 ... 0

2Ex ix 2E2 i2 2Es(is - _s) "" 0

: : : ".. :

2Ex ix 2Ez i2 2Es is ... 2E.(i. - r.)

(11)

To compute tGp, we only have to evaluate 2Ei _', 2Ei ri, and 2Ei(a_ - ri) once for i = 1,..., n.
The matrix t_/, can be further partitioned into tGp. and tGp. as in (4). This involves permuting selected

columns; however, the special structure is retained for these matrices after they axe partitioned.
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3.1.2 Translational Velocity Kinematic Constraints t(_

Translational velocity constraints are written as

tGi - Vb, _ + = 0
/t----1

(12)

Let

then, (12) becomes t_i - Vb,

X0 o
- _'ri + _" : O, or tecursively

_, -- v_, - _, + (_.__ +t,) = o (13)

Similar to (6), we only have to compute Vb,, _ri, and _ once. Instead of computing Ai, we compute _t/'_ 1 _-X/

recursively to save computations.
The Jacobian matrices correspond to t_ are tGv, tGs, and t(_p in which tGv can be shown to be a unit

matrix easily, and tGls and t_v will be shown to possess special structures• The Jacobian matrix of t_ with

t Gs =
0 Sb

respect to Sb is defined as

0 S.t z # Sin

0 St z 0 Stm

,-Y_T. _-_T,, "'" as,.

(14)

Since *Gi is a function of sbl, sb2, ..., and sb,, for each row i (i : 1, ...,n) we have

Hence, (14) becomes

-- 0; k=i+l,...,n

t_ s =

0 0 ... 0
Ostl

_ o ... o
0 Sb I 8 Sb:

: : • ... •

_,__ _,__ _ _'_-

The entries in each column i (i : 1, ..., n) in (16) are derived, in Appendix D.1 in [5], as

{ _ = 2E_a_ -2E_ri
8 S_

2E_ al; k = i-Jr 1, ,n
O St_ " ""

(15)

(16)

(17)

Comparing (17) with (10), we find that

0'_ OtG
tO s - - - 'Gp

O Ss O Ps

Computing CGs is not required. Once we compute tGp, we get tGs.

(18)
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TheJacobian,t_p, is different.

lower-triangular matrix like tGs and is written as

o'd;
Op._t _p ._

8 Pb

Since t Gi is a function of Pbl, Pbz, ..., and Pb,, t_p is a blocked

0 0 ... 0

0 ... 0

• • • •

0 p.= 0 Pbs 0 Pb.

The entries in each column i (i : 1, ..., n) in (19) are derived, in Appendix D.1 in [5], as

{ o__. = 2_i _" - 2J_i r_
a p._

2E, a/'; k=i+l,.. ,n
8p._

Hence, (19) becomes

*d_p :

2i_t(7.t - _t) o o ... o
2Et ;'1 2_,(_,2 - _,) o ... o
2kl gl 2E2 7.= 2%3(7.s- _s) ... o

: : . -.. •

2J_1 7.1 2J_a a2 2Es as --. 2E,(a, - r,)

(19)

(20)

(21)

To compute t_p, we only have to evaluate 2E_ al, 2J_i rl, and 2E_(al - rl) once for i = 1,..., n.

The matrices tG s and t_p can be further partitioned into tGs., tGs., tGp_, and t_p. as in (4). This
involves permuting selected columns. However, after permuting columns the special structures are retained for
these partitioned matrices.

3.1.3 Torque-Balance Equations "F

The torque-balance equations for an n-body pendulum were derived as

n

- T•r, - TI, - _,A,_M,(%,-g) + .,A, _M_(%,- g) = 0
k=i

Let

ii = EL, M_(_r., - g)M,(_, - g)
+1 =

(22)

then, we can write (22) as'F, = T i - _,A_s, + _A/T* ", : 0, or recursively
bl

"r, = T' _,AT=, + _AT(".,+_',+_) 0 (23)bl --

When we compute the residualof'F, we only have toevaluateT_,,si,_iA_rzi,and _A_'i once fori : 1,...,n.
Insteadofcomputing I"iforeach equation,we compute sland accumulate itrecursivelyto save computations.

The recursiveterm, sl+ Iri+t,runs in backward sequence;that is,i : n,...,1.

The Jacobian of'F has three parts:"Fv, "Fs, and "Fp. They alsopossessspecialstructures.First,the
Jacobian of'F with respect to Vb is written as

8"F
= 0"---'4--- = O"

8Vb

o__ o__ ... o___
0 V_ o V._ o V._
o__ o__ ... o__
0 V_ o V._ o V_

. . ... •

o___ o___ o___

(24)
8"F 0"F

"Fv = OVb + _---_orb
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Since "F, is a function of Vb,, Vb,+,, --., and %rb., for each column i (i = 1, ..., n) we have

O'F_
o'----r-- = O; k=i+l,...,n

0 V_,

(25)

The matrix (24) becomes a blocked upper-triangular matrix and is

_ ...
oV, 1 oVb2

0 _ "'"

rF V : o" oVb,

0 0 "°"

written as

orb.

oVa,.

oVb.

(26)

The entries of each row i (i = 1,...,n) in "Fv are derived as

{ ,.o_=L = _ .M,,,A,T + .M,_A_
0V)i

a'°---_ a- a'Mi&A_; k := i + 1, ..., n
o Vbh

(27)

Hence, (26) becomes

"Fv = o"
(28)

To compute "Fv, we only have to evaluate o'M_(_ - }_)A_ and _rMk_A_ once for i : 1, ...,n.

The 3acobian of "F with respect to P_ is similar to (24). However, since "Fi is a function of pb,, the

off-diagonal entries become zero:

O'Fi O'F_
-- 0; k :: i+ 1,...,n (29)

0 Pb, O Pb_

for i = 1, ...,n. Hence, "Fp becomes a diagonally blocked matrix and is written as

O'F
"Fp =--

0 Pb

0 "" 0

o _ ... o
o P.2

: : ".. •

o o o__:L
• " " • pb.

(30)

where

0 "Fi

0 Ps_

o (A,r,,) i, 0 (,:_%-,)O T_ _, +
- O p_, O p_ o Pb,

O Pb,
• T •

: {2I, G, + 4GIG i I, Gi- 4(s_pb,)IiGi- 2_iGi}

-2}iGi+_ + 2_G_+i (31)

where _/,i = Ii,_i : 2IiGifJb, and _i - _b x are defined in Appendix D.2 in [5].
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"Fs has a structure identical to that in "Fp. The off-diagonal entries are zero:

O'F_ a'Fh a'Fi a'F_

Osb, Oib, Os_ +_-- = O; k=i+l,...,n

for i = 1, ..., n. The Jacobian "Fs is diagonally blocked and is written as

_ +._-:_ 0 ...
O Sba

o'F o'F 0 _ + ._--_ ...
0 Sb= 0 8_="F s -- + _r---r- :

0 Sb 0 Sb • : ...

where

0 0

O'F_ O'Tb, + _rO'T_,O'Fi + _
0 sb, O iS, 0 sb, 0 il,

: {4G, GyI, G,

0

0

o'F_ _rO_._
•"" .T-_.+ os._

-- 4(s_pb,)llG, + 2_,G,} - o'(2I, Gi)

The derivation of (31) and (34) is given in Appendix D.2 in [5].

(32)

(33)

(34)

3.1.4 Equations Concerning Euler Parameters: "11, "12, and "13

When we compute the residuals of "I 1, "I 2, and "I s, there is no applicable reeursive structure that can be
utilized. However, their Jacobians do have some special structures because these equations are derived for each
body. Matrices with diagonally blocked structures are to be expected.

First, the normality constraint for each set of Euler parameters is written as

T
"I_a -- Pb, Pb, -- 1 : 0 (35)

Since "I_ is a function of Pb, only, we have

O'I_ : 0"I 1 = O; k=i+l,...,n (36)
O Pbh O Pb,

From (36), the Jacobian matrix of "I t with respect to p_, Ps=, ..., and Pb. must be a diagonally blocked
matrix. The same argument can be applied to "I 2 and "I n such that their Jscobians with respect to P_ and
S_ axe diagonally blocked.

Since the blocks concerning these three sets of equations are locally processed, as shown in [5], the Jacobian
matrices "I_,., "I_,., and "I]_. possess a similar structure which is illustrated as follows:

where

axe defined in Appendix B.1 in [5].

o'/ "-

*t 0 ... 0
0 ,= ... 0

.. • ... •

0 0 "" ¢-n
0"1 0 .-- 0

0 0"2 "" 0

: : ".. :

0 0 ... 0".

vt 0 ... 0
0 v= ... 0

: : ".. :

0 0 --. v.

[d,e,/d

[-.oo 10 -o" 0
0 0 -o-

[,_ b, _,]

(37)
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4 SOLVING THE REDUCED SYSTEM

Solving the reduced system means to solve the linear system using the technique of dimension reduction.
Partitioning the linear system, JAX = E, according to the partition in (4) gives

Since .111 is a unit upper-triangular matrix and is non-singular, we can obtNn

[Jtt Jt2] [AXx

For the independent corrections AX2, we solve

[z_,,x, = z_] (38)

by LU factorization where

JR : J_2 - J2xJ'itJ1_Es E2 (J2xJx'xX)E_

The dependent corrections AXx are obtained by backward substitutions:

AX1 = J11(S1 - J12AX2)

(39)

(40)

4.1 Solving for Independent Corrections

The independent corrections AX2 are obtained by solving the linear system JRAX2 = ER. The evaluation
of JR and ER is accomplished by developing a set of formulae such that the sparsity of the linear system is
completely utilized. From (4), we derive the following formulae, for JR and ER:

JR = "Fp. - ('Fv)C'(_p-) - ('_4)('I_,-)

- ('_s)("l_-) - ('_o)('I_.)

and

where

ER = _'r - ('Fv,)'G - ('_F4) "I2 -- ('@s) "Ia - ("_o) "II

(41)

(42)

'_,, : "F_. - ('F).)('#_.)"x), : "Fs. - ('F).)('_-) (43)
"_8 : I"FP " -- ('FV)(t_P')

When we compute JR and ER using the above formulae,severalmatrix multiplicationswillbe performed.

The specialstructuresdiscussedin the previous sectioncan be exploitedtoreduce computation cost.

4.2 Solving for Dependent Corrections

Once we obtain the independent corrections, AX2, the dependent corrections, AXx, can be computed by

Jl-_ (Et -JtzAX2). However, using this formula directly is not practical since Jlt has a very simple structure
with many zeros. In order to utilize the sparsity completely, a set of formulae are derived symbolically for the

dependent corrections. They are as follows:

AP_ : "II -('/_,)AP_ (44)

AS_ ,i a , 8 • (45)= - ( Ip.)APb

AS_ ,i 2 , 2 •= - ( Ip.)APb (46)

av_ : '_ - ('_s.)AS; '" "- ( Gs.)AS_

- ('_p.)Ap_ -- ('_;_p-)AP; (47)

ARb : tG -- ('Gp-)AP_' -- (tGp.)AP_, (48)

Again, when we compute the dependent corrections using the above formulae, the special structures discussed
in the previous section can be exploited.
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5 LINEAR COMPUTATIONAL-COST SCHEME

Rewriting the full system (4) by

• combining S_ and S] to form S in the original order

• combining P_ and P_ to form P in the original order

• combining "I 1 and "I 8 to form I

• combining -2_ "I 2 (scaled by -2w) and "F to form F

• re-arranging the columns and rows

• dropping the subscripts and superscripts for clarity and simplicity

gives

or

I oo l [l0 Fp Fs Fv AS = P

o _e _s _v Av

[ [10 Fp Fs Fv AS = F

o _p _s u Av

(49)

(5o)

where GR and Gv were shown to be unit matrices. In order to make Ip a unit matrix, Gaussian elimination
has to be applied to Ip, Is, and I locally. An example for one body is given in Appendix B.2 in [5]. We intend
to solve this linear system with a computational cost which is linearly proportional to the number of bodies in
the system.

5.1 Basic Theory

Applying the technique of dimension reduction to (50) gives

where

and

iU 10 GUP Is AP

0 0 J0_ AS =
0 0 JR AV ER

JR = u - (_s- i_j,zs)J_' YvBR G (Gp) I - (Gs - GpIs) J_X(F - Fp I)

{ Jp = Fs - Fp ISEF F -- (Fp) I - (gv) AV

Instead of solving (50) directly by LU factorisation, we solve

to obtain AV; then we solve

(51)

(52)

(53)

[JRAV = 1$a] (54)

IJFAS = EFJ

to obtain AS. The rest of corrections can be computed by

AP = I - (Is)ASAR G - (Gp) AP

(55)

(56)
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5.2 Invertibility

In [6], we have shown that JR is non-singular if ./is non-singular. From (52), we have to find JF in order to
evaluate JR. We would like to show that Jr is invertible when 0" --, oo.

The matrix J_. is diagonally blocked because it is computed by Fs - Fp Is where Fs, Fp, and Is are
all diagonally blocked matrices. Each block at the diagonal position in Jl_ is computed by its corresponding
block in Fs, F_, and Is. Hence, we write

Jp, = Fs, - Fp, Is, (57)

for each diagonal block.

Hence, we may write

Pp, Is, = 1T_
0"

Also, from (34) we find that Fs, may be written as

Ps, = -0"(2I, G,) + F,

Hence, we can write

If 0" -_ oo, we have

From (B.12) in Appendix B given in [5], we find that Is, is a matrix scaled by !.¢

JF, = -0"(21,Gi) + FL - 1T, (58)
0"

JF, - 0"(2I,G,) (s9)
However, we have added one more equation into the F block as mentioned previously. This increases the

number of equations in each block in F from three to four. The equation is "I_ scaled by -20"; that is,

-20''I_ - -20"p_sl = 0

-- 2o"p_

(60)

(61)
The Jacobian corresponding to s is

Combining it with (59) gives
+2'

•/2, _ -0"(21, P,) (62)

Adding equation (60) into block F is equivalent to using Euler's equations in quaternion space [7]. We
have proved that the coefficient matrix with respect to i in Euler's equations for inertial torque in 4-space is

a non-singular matrix [7]. This matrix is exactly the same as 2Ii(P_) T in (62). Therefore, Jr, as well as JF
are invertible if 0" ---* oo.

5.3 Sununary of Computational Cost

The detailed discussion of the linear-cost scheme was presented in [5]. In terms ofmultiplicative(x) and additive

(+) operations, the computational cost required for solving the reduced linear system for the linear-cost scheme
is summarised also in detail in [5] as Tables 2 to 6. Adding up the totals in the tables gives the grand total of
operations required for the linear-cost scheme:

x: 657n - 324 (63)+: 15n 2 + 574n- 321

This cost is not for obtaining one solution point; it is the cost of solving the reduced linear system for one
Newton's iteration. The computational cost for reaching a solution point depends on output step size and the
number of iterations.

6 IMPLEMENTATION AND RESULTS

A program, called LINPEN (LINear-cost scheme for simulating an n-body PENdulum), was coded to sim-
ulate a pendulum. The program is equipped with modules for reporting various physical quantities such as
displacement, velocity, and acceleration and was run on a VAX 750 computer. The motion of a user-specified
pendulum can be displayed on a GRINNELL display terminal.

Each body is drawn as a standardized 3-D polygon and is projected in perspective, on the terminal screen
according to its simulated position and orientation. An example of simulating a 3-body pendulum for ten
continuous positions is illustrated in Figure 1. The figure looks exactly the same as displayed on the display
terminal.

97



Figure 1: Simulation of a 3-body pendulum.

6.1 Comparative Study in Computational Cost

For each solution point, a linear system, J AX = E, may have to be solved by LU factorisation several times.
There are four schemes available to accomplish this:

• solving the full linear system by LU factorisation where J is approximated by numerical difference

• solving the full linear system by LU factorization where J is evaluated by the exact Jacobian matrix of
E

• solving the reduced linear system by LU factorisation where 3 is evaluated by the exact Jacobian and
is further reduced to its optimal size using the technique of dimension reduction

• solving the reduced linear system by LU factorisation where J is evaluated by the exact :Iacobian and
is further reduced to its optimal size using the linear-cost scheme

For each iteration, the analytical count of operations required to solve the full system, reduced system, and
the linear-cost system with exact Jacobian is tabulated in Table 1. Although the additive operations for the
linear-cost system is O(n2), we may consider the cost linear because the amount of time required to perform a
multiplication or division on a computer is about the same and is considerably greater than that required to
perform an addition or subtraction.

The simulation of an n-body pendulum was run for the four systems. For each system, the program was
run ten times from one body to ten bodies. One hundred solution points were generated, for each run, with an
output time-step of 0.01 seconds and a tolerance of 10 -7. Total CPU time for solving four systems is calculated
in terms of CPU time per residual-call or CPU time per Jacobian-call. Total CPU time per residual-call versus
the number of bodies is plotted in Figure 2.
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, ._ L ,

Number of Bodie,

Figure 2: Computational cost in terms of CPU time for four systems.

An N-Body Pendulum
Grand Total of Operations for Three Systems

with Exact Jacobian Matrix

System

Full System

Reduced System
Linear-Cost System

x

915n e + 196n _ - 5n

33n e -{- 129n _ + 50n
657n - 324

+
915n _ + 196n _ -- 19n

25n 3 ÷ 51n z + 25n

15n z + 574n -- 321

Table 1: Analytical count of operations required for solving three systems with analytical Jacobian
matrices.
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7 REMARKS

The mathematical model of an n-body pendulum with spherical joints and its solution method have been
presented. The mathematical model derived here is a mixed system of differential and algebraic equations
(DAE's) in implicit form. A model of state-space equations can be dezived if we do further complex substitu-
tions. However, in the form of DAE's the equations of motion provide more sparsity, and this sparsity can be
exploited when numerical solution methods are applied. The modeling and formulation of an n-body pendulum
is the first study, for its similarity to a robotic manipulator in structure and for its simplicity in equations.

We also present four solution methods for solving the equations of motion of this n-body pendulum. The
first method solves the linear system, J AX = E, directly by LU factorisation where J is approximated
by numerical difference. The second method solves the linear system directly by LU factorisation, but J is
evaluated by its analytical Jacobian matrix with some structural consideration.

The third method employs the technique of dimension reduction to transform the full system to its reduced
system, 3R AV = ER, such that LU factorisation is performed on the reduced system only. This technique
utilizes the sparsity of the system completely and saves a considerable number of computations. The four
methods also employ the technique of dimension reduction to reduce the size of the system. However, they
further exploit the structure of the system such that the reduced Jacobian generated possesses a very special
structure which can be utilised to solve the system in a nearly-linear computational cost.

The comparative study in computational cost for these four systems in the paper gives strong evidence of
the success of the theory developed.
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Abstract

It is shown in this paper how a variable structure control technique

could be implemented to achieve precise pointing and good tracking of a

deformable structure subject to fast slewing maneuvers. The correction

torque that has to be applied to the structure is based on estimates of upper

bounds on the model errors. For a rapid rotation of the deformable

structure, the clastic response can be modeled by oscillators driven by

angular acceleration, and where stiffness and damping coefficients are also

angular velocity and acceleration dependent. By transforming this "slew-

driven" elastic dynamics into bilinear form (by regarding the vector made

up of the angular velocity, squared angular velocity and angular

acceleration components, which appear in the coefficients as the input to

the deformation dynamics), an operator spline can be constructed, that

gives a low order estimate of the induced disturbance. Moreover, a "worst

case" error bound between the estimated deformation and the unknown

exact deformation is also generated, which can be used where required in

the sliding control correction.
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Abstract

The structured singular value, l_, is an important linear algebra

tool to study a class of matrix perturbation problems. It is useful for

analyzing the robustness of stability and performance of uncertain,

(nominally) linear systems. Computation of (M) is difficult, and

usually, upper and lower bounds are all that can be reliably

computed. Upper bounds give conservative estimates of the sizes of

allowable perturbations. The maximum singular value of a matrix M

is an upper bound for (M). As an upper bound, it can be improved

by finding a transformations to the data (ie. M) which do not change

the structured singular value, but do reduce the maximum singular

value. Typically, upper bound algorithms involve searches over sets

of transformations to yield the tightest bound. Lower bound

algorithms produce small, destabilizing perturbations. In general, the

algorithms are intelligent searches for minimum-norm solutions to

multivariable polynomial equations, and are based on various

optimality conditions that hold at the global (and, unfortunately,

some local) minima. This paper reviews the current methods to

compute both of these types of bounds, covering theoretical

justification and extensive numerical experience with the various

algorithms.
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Algorithms for Computing the

Stability Margin

Multivariable

Jonathan A. Tekawy* Michael G. Safonovt and Richard Y. Chian_

Abstract

Stability margin for multiloop flight control systems has become a critical

issue, especially in highly maneuverable aircraft designs where there are in-

herent strong cross-couplings between the various feedback control loops. To

cope with this issue,we have developed computer algorithms based on non-

differentiable optimization theory. These algorithms have been developed for

computing the Multivariable Stability Margin (MSM). The MSM of a dynam-

ical system is the "size" of the smallest structured perturbation in component

dynamics that will destabilize the sytem. These algorithms have been coded

and appear to be reliable. As illustrated by examples, they provide the basis

for evaluating the robustness and performance of flight control systems.

1 Introduction

Accurate knowledge of the dynamical model associated with the design of modern
flight control system is becoming more difficult to obtain. This is especially true for
the design of the next generation fighters where many of the performance specifica-

tions go beyond the capability of the aircraft currently in service. Robust control

analysis methods have received considerable attention in recent years as a possible

solution to the problem of controlling systems for which the given model contains

significant uncertainty [Saf 1] [Doyle2]. The central feature of these methods is their

effectiveness in handling an unknown-but-bounded class of plants, instead of the nom-

inal plant only.

*Flight Control Research, Aircraft Div., Northrop Corporation, Hawthorne, CA 90250
rE. E. - Systems Dept., University of Southern California, Los Angeles, CA 90089-0781
IFlight Control Research, Aircraft Div., Northrop Corporation, Hawthorne, CA 90250
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The uncertainty in the nominal plant arisesfrom severaldifferent sources: For
gain-scheduledaerospacevehiclecontrol systems,typical uncertaintiesin the plant at

each design point consist mainly of modeling errors due to uncertain aerodynamic co-

efficients, linearization, model reduction, neglected dynamics, time-delays, etc. Aero-

dynamic coemcients developed from wind tunnel testing or computational fluid dy-

namics usually are different from those obtained from actual flight data. Linearization

will also affect the nominal plant behavior. Nonlinear effects such as actuator satura-

tion and rate limits are neglected altogether when a model is linearized. Parameter

drift wiU also affect the nominal plant. There may be dynamical modes which are

intentionally or unknowingly neglected. In addition phase loss which results from

time delay also leads to an uncertainty bound.

The uncertainty may be loosely classified as falling into two categories, structured

and unstructured. Structured uncertainty arises from specific component or parame-

tar variations. Two examples of structured uncertainty are variations in weight and

drifting aerodynamic parameters. Unstructured uncertainty is any other sort of uncer-

tainty which can be regarded as a frequency-dependent norm bounded perturbation

matrix. High frequency modeling errors are one type of unstructured uncertainty.

The linearization of the nonlinear equations of motion centribute to both classes of

uncertainty. Actuator rate and position limits have a distinctive signature which can

easily be isolated, so that they fall into the class of structured uncertainties. On the

other hand, the effects of nonlinear kinematic terms can only be bounded, therefore

necessitating an unstructured uncertainty representation.

2 Robustness Measure

Safonov [Saf 2], who built upon different, but related, conic-sector nonlinear stability

theory work of Zames [Zames], reinterpreted the conic-sector stability concepts in

order to deal with uncertainty and robustness issues. Safonov, Doyle and Fan, to

name a few, have contributed to the continuing development in this area [Saf 3]

[Saf 41 [Doyle2] [Fanl.

Basically the robustness measure is done by lumping uncertain deviations from a

nominal system M(s) into an uncertain matrix A(s) resulting in an uncertain feedback

system with loop transfer function &(s)M(s) as shown in figure 1.

Then, the Multivariable Stability Margin (MSM), "K,_", is defined as the smallest

stable, norm-bounded perturbation A(s) that can destabilize the system. While Km

is in general difficult to compute, a reasonably tight lower bound K,_ theoretically

can be computed using diagonally scaled singular values [Saf 3] [Doyle2] [Fan]. The

plot of K,,_(w) vs. frequency identifies tolerable levels of parameter uncertainty as a

function of frequency.
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A(s) 1M(s)

A=diag[A,,A,, ....,AL,..,A,,]
Figure I: Robustness analysis model.

For unstructured uncertainty, the maximum singular value has been shown to be

useful in bounding the multivar/able stability margin. However, the bound can be

very conservative in the case of structured uncertainty. The singular value analysis

will attempt to find the worst direction of the uncertainty that in reality impossible to

exist. To deal with the case of diagonally structured A, Safonov [Saf 4] introduced the

two-sided structured Multivariable _tability Margin (MSM), denoted K,,, and Doyle

[Doyle2] introduced the term Structured Singular Value (SSV), denoted #, to describe

the reciprocal, #(M(s)) = 1/K,,,,(M(s)). Diagonal perturbations are quite general

and flexible if one considers parametric uncertainties (e.g. aerodynamic coefficients).

Traditionally one defines K,, and # for "two-sided" magnitude-bounded uncertainties

which may be either positive or negative; but in cases where the sign of the uncertain

A i is known a priori one may modify the definitions of K,,, and _ accordingly.

When the uncertainties are known to cover both positive and negative pertur-

bations, the SSV of Doyle and MSM of Safonov provide a "tight" (to within 15%)

condition for robust stability. This condition is measured by representing directly the

individual sources of uncertainties in the form of block diagonM perturbations.

Definition: Given transfer functions G(s),a(s) and b(s), we write

a(,) e ,ecto,[,,,b]

if

where

and

la(j,.,,)- c(jw)l <_Ir(Jw)l vw

c(,) = (,,(,) + b(,))/2

,,(,) = (,,(,)- b(,))/2

Assuming M(s) and A(s) to be stable then the one-sided MSM, "K..," and, the

two-sided MSM, "K.,3" are defined by the following (see figure 2 and 3):
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Figure 2: One-sided K,,,

Figure 3: Two-sided K,n

• One-sided K,n :

The system is stable for all A with

Ai E 8ea_[0, K,,_l] Vi = 1,...,n. (1)

s Two-sided K= :

The system is stable for all A with

A_ E aea_[-K=_,K,,_2] Vi = 1,.-.,n. (2)

For any diagonal matrix D, a practical upper bound on p = 1/K=, is a=u(DMD-1).

Further, it is known that for 3 or fewer Ai's that the minimum over D of this

upper bound is actually equal to # [Doyle2]. Safonov and Doyle proved that the

minimization problem of a_a_,(DMD -1) is convex in D' = log(D), so that every local

minimum is a global minimum. Furthermore, computational experience has shown

that minimum of o',,,a_(DMD -1) over D is within 15% of p. So, we choose to work

with this upper bound, _12, to calculate the reciprocal of two-sided MSM. Practical

upper bound for the reciprocal of one-sided MSM can be easily derived by using conic
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-K

Figure 4: _,

sector property of Zames [Zames]; viz. K_ is bounded above by

"l 1 1

K.,, = mazl_minvA,,,..=(DMD- + (DMD-I)'),O] (3)

By modifying the former equation to include the permutation matrix _, a less

conservative bound for the two-sided real MSM, K._., is given by

K',,,', 1 1
= maz[_maz,,minv)_,.,o,,(DM¢,D- + (DMdziD-')'),O] (4)

Here

_b_E @, i = 1,...,2"

and • is the set of all permutation n x n diagonal matrices.

-- diag[(±l), ........ ,(±1)]

The bound (4) is similar to the one proposed by Jones [Jones]:

1

_minDmaz_,A.,o.(DMd_,D -1 + (DM¢,D-_) *) (5)

Although, equation (5) will lead to more conservative bounds, Geometrically equation

(4) is shown in figure 4.

It should be mentioned at this point that several software packages are available

to compute the two-sided MSM ,however , they are not accessible to the authors to
be evaluated.

3 Km Computation

The computation of #,_offi is straight forward using available numerical software (Lin-

pack). For both one-sided, real and two-sided cases, we have to solve an optimization
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problem. However for all of these problems, the analytical gradient is available, so

accurate solution can be obtained. However, when several eigenvalues or singular

values coalesce (i.e., have multiplicity greater than one) the function is nondifferen-

tiable ("creases" produce direction-dependent derivatives), so that a more complex

algorithm of computing a descent direction is required. Before actually solving either

case, one can approximately prescale the system matrix M by substituting for M the
matrix DMD -I where D minimizes the Frobenius norm of DMD -1 [Osborne].

The monotonic transformation of D --* D', with D = Ezp(D'), transforms the

problem into a well behaved convex optimization [Saf 5]. The initial guess for D was

taken to be equal to the identity. This initial guess was used only for the first frequency

value in the given range. The solution obtained for a particular frequency point was

then used as an initial guess for the next value. Suppose that the largest eigenvalue

is simple, then a descent direction is calculated directly using the Davidon-Fletcher-

Powell technique. In the case that the largest eigenvalue has multiplicity greater than

1 and the function is not continuously differentiable, a generalized gradient is used

to determine a descent direction. Once this is done, the minimal point can be found

in the specified descent direction by using a well known "binary search" algorithm

of Bolzano. These steps are repeated until the global minimum is located (i.e. gra-

dient is zero). Convexity of o,,affite-2/_V'_vleml_-V') and Xma._(eV'Me -v' + (eD'Me-D') ")

ensures that this procedure is convergent to the global minimum.These steps can be

summarized as follows:

1. Initialize M1 = M; D_ = 0; k = 1.

2. Scale Mk+l = en'_blke-D'_; set D'k+ 1 = 0

3. Find the search direction

- Davidon Fletcher Powell (DFP) deflected gradient.

- DFP generalized gradient for multiplicity > 2

4. Unidirectional search.

- Method of Bolzano (Fig. 5).

5. D_,+I *-- D_,+I+ stepsize * search direction.

6. k = k + l; go to step 2.

Step 5. of the algorithm involves varying the diagonal scaling matrix D' along a line

by adjusting the scalar parameter stepsize. The size of eD:+ ' could approach the

value of o0. To prevent this, as the stepsize grows, -Mk+l, is repeatedly updated to
D' D'

Mk+l_e _+,Me- _+, and stepsize and D_+ 1 are reset to zero. This is done as often

as needed to prevent numerical overflow when eD"+ , is evaluated.
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Figure 5: Method of Bolzano.

3.1 Generalized Gradient.

This discussion is not at all self contained and only key results will be stated. An

excellent reference for this algorithm is [Polak]. In the case where the greatest eigen-

value/singular value has multiplicity greater than one, the function ceases to be dif-

ferentiable. In this case the gradient is not defined and more complicated "generalized

gradient" methods must be used to compute the descent direction. The generalized

gradient at a nondifferentiable point is defined as the nearest point to the origin
in the convex-hull of the set of directional derivatives at neighboring points; thus

the computation of the generalized gradient at any point is itself a convex nonlinear

programming problem. We employ an algorithm similar to that of [Doyle2, Polakl]

to compute the generalized gradients of a,,_offit_-2t_D'_,,_n,_-D')and A,,,,,,_(_I_D'jv,_x_-v' +

(eV'Me-V')'). Geometrically the algorithm is shown in figure 6 and summarized as

follows:

• Generalized Gradient is defined as:

V,.. _=N.(Oo{V(z)I Ilxll = I})

where

Co(.) - the convex hull of the set (.).

Nr(.) - the nearest point to the origin of the set (.).

{V(_)I I1 11= 1}- the set of directional derivatives.

• Iterative algorithm for computing Vg_,:

1. Initialize k = 1.

2. Guess zk and set yk = V(zk).
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Figure 6: Generalized gradient.

3. Find zh+l by minimizing (ltZ V(zk+l)) ,abject to II=k+lll= 1.

4. Find _/k+l = Nr( Co(lt_, V(zk+l)).

5. Increment k _ k + 1, go to step 3.

3.:2 Davidon-Fletcher-Powell Scaling.

The unmodified generMized gradient determines a steepest descent direction. The

steepest descent direction is simply minus the generalized gradient. Steepest descent

usually works quite well during early stages of the optimization process but if the

Hessian (second derivative) matrix has a large condition number, the method usually

behaves poorly, and smM1 zig-zagging steps, called "stitching", take place (see fig.

7). Stitching problems also occur when the multiplicity of _,,_a= or _,_a_ is 3 or
more. Therefore we use the Davidon-Fletcher-Powell (DFP) method to modify the

generalized gradient in order to handle this phenomenon. This technique uses the

previously calculated generalized gradient to estimate the Hessian and effectively
rescale the function to make its Hessian better conditioned. This quadratic fit method

requires fewer gradient evaluations and tends to converge faster. It should also be

noted that the likelihood of stitching-induced premature termination of the algorithm

(as can occur in the unscaled steepest descent technique) can be greatly reduced with

the DFP scaling.

4

4.1

Lateral Directional Flight Control Example

Example 1
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Figure 9: Two-sided actuator uncertainty model.
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Figure 10: One-sided actuator uncertainty model.

Nonlinear elements of actuators can be treated as linear conic-sector elements with

structured uncertainty. This uncertainty can be modeled as one-sided or two-sided

uncertain gains within the actuator model. This can be shown through an example.

Consider a saturation curve below. If the input size is always less than C, then the

saturation element is equivalent to a gain element with a magnitude of one, however,

if u exceeds C, one may model the saturation element as a two-sided uncertain gain

A in parallel with a nominal gain of one as shown in figure 9. A better approach is to

model the saturation element by a gain with a nominal value of one and a one-sided

negative uncertainty as shown in figure I0. Clearly, the one-sided model will produce

less conservative margins than the two-sided model.

A design example is presented below in which MSM algorithm is asked to check the

robustness of a typical lateral/directional flight control systems with respect to the

actuator uncertainty (e.g. position saturation) and the reduction in the effectiveness

of all control surfaces. The state-space matrices are given in figure 11. The controller

uses roll rate, P, yaw rate, R, and the lateral acceleration, N_, for feedback (see figure

12). By putting "extender wires" on the uncertainty blocks A, and pulling them out

into a separate "block", one can check the system robustness.

The plot of K,,,, K,,_ and tT,_oz are in figure 13. Note that the cr,,_o, and ]t'm2

which have the minimum values of .015 and .42 respectively are equal or less than

K,, I for all frequency, and therefore shown to be more conservative than one-sided
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Figure 11: State-space matrices.
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structured stability margin K,.,,,.This results from the one-sided structured mul-

tiplicative uncertainty that is not accounted for in the computation (i.e. nonlinear

elements of actuators and gain reduction tolerance at the controller outputs). To

properly account for the sign of the uncertainty and its structural information, the

one-sided MSM was computed and it is shown to have a better robustness measure.

Kin, has the minimum value of 0.677, indicating that the system can simultaneously

tolerate at least a 67.7 percent reduction in the effectiveness of all control surfaces and

the actuator inputs up to at least three times the saturation value without instability.

4.2 Example 2

The MSM's minimal value K,_p,,k also can be used to quantify a control systems

tolerance of simultaneous gain and phase variations at all the plant inputs and out-

puts. This is done so the system has good stability robustness with respect to the

uncertainties at the two actuator commands and the three sensor outputs (see figure

14). These uncertainties come from various sources. Model accuracy deteriorates at

higher frequencies due to unmodeled aeroservoelastic effect. Several potential error

sources exist within the assumed perfect sensors. Model reduction of the actuators

can also be considered as one of the effects at the plant inputs.

Shown in figure 15 is the Bode plot of the MSM vs. frequency. The minimal

value, denoted K,,_,,,_ = .4196, gives an indication of the minimal size of structured

perturbations required to destabilize the system or equivalently diagonal perturbation

ll5



OR,G_,_A,.-_'_"; I_
OF POOR QUALITY

A

: ........ : ": : - :

..,,.,.':-.....,,...i........T ._i,,if,,iii,._
•_. _ ___.,;...,,

-"............... :Fi : : :::......,,... ,.,..,.,t l,.-,....i,i._: ........'"'"*'
"'"'_' ® iii ':: ...... _,... Ib,

I I I ..,,,s....ms.,_ L. ! ! _ •

I !, m-,w,'., r i_ _-_' '"'"',-,....

I """''" _.: ;_a",........
It|

tDnpeaeellom

Figure 14: Lateral directional flight control with uncertainties at the plant input and

output.

40.

30.

20.

10.

0.0

-10.

-20.

-30.

-40.

-.50.

/

f

%.

%,

I

/

/,

/

/

/

/
,%

10-3 10-2 10 -1 10 0 101 10 2

RADISEC
Figure 15: MSM at the plant input and output.

10 3

116



as large as 41.96 percent can be tolerated at any frequency; at higher frequencies,

perturbation magnitude as large as w/10 can be tolerated.

5 Conclusion

Computer algorithms for determining the multivariable stability margin "K=" have

been developed. The algorithms provide a reliable tool for ewluating the robust-

ness of control systems with significant gain and/or parameter uncertainties. The

computation for the one-sided and two-sided structured stability margin were done

using nondifferentiable optimization theory. Robustness analysis was performed on a

typical lateral directional flight control system problem with large uncertainty.

References

[Doyle2] Doyle, J. C. (1982a). Analysis of feedback systems with structured uncer-

tainties. IEE Proc., 129,part D, 242-250.

[Fan] Fan, M. K. and Tits, A. L. (1986). Characterization and Efficient Computation

of the Structured Singular Value. IEEE Trans. on Automatic Control, AC-31,
734-743.

[Jones] Jones, R. D. (1987). Structured Singular Value Analysis for Real Paraxneter

Variations. 1987 AIAA Conference in Guidance and Control.

[Osborne] Osborne, E. E. (1060). On pre-conditioning of matrices. JACM, vol. 7,

338-345.

[Polak] Polak, E. and Mayne, D. Q. (1981). On the solution of singular value in-

equalities over a continuum of frequencies. IEEE Trans. on Automatic Control,

AC-26, 690-694.

[Sat 1] Safonov, M. G., A. J. Laub and G. Hartmann (1981). Feedback properties of

multivariable systems: The role and use of the return difference matrix. IEEE

Trans. on Automatic Control, AC-26, 47-65.

[Saf2] Safonov, M. G. (19ft0). Stobilih/ and Rob,,stness of Multi,,ariabl; Feedbock

Systems. MIT Press, Cambridge, MA.

[Saf 3] Safonov, M. G. (1982). Stability margins of diagonally perturbed multivariable

feedback systems. IEE Proc., 129,part D, 251-256.

117



[Saf 4] Safonov, M. G. and M. Athens (1981). A multiloop generalization of the circle

criterion for stability margin analysis. IEEE Trans. on Automatic Control, AC-

26, 415-422.

[Saf 5] Safonov, M. G. and J. C. Doyle (1983). Optimal scaling for multivariable

stability margin singular value computation. Proc. MECO/EEST3 Symposium,

Athens, Greece.

[Zames] Zsmes, G. (1966). On the input-output stability of time-varying nonlinear

feedback systems - Parts I end II. IEEE Trans. on Automatic Control, AC-11,

228-238 end 465-476, 1966.

118



N9o-2 ooo

Robustness

S

Analysis for Real Parametric Uncertainty
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Abstract

This paper has a twofold purpose. First, to review some key results in

the literature in the area of robustness analysis for linear feedback systems

with structured model uncertainty, and secondly to present some new

results.

Model uncertainty is described as a combination of real uncertain

parameters and norm bounded unmodeled dynamics. We will mainly focus

on the case of parametric uncertainty. An elementary and unified

derivation of the celebrated theorem of Kharitonov and the Edge Theorem

will be presented. Next, an algorithmic approach for robustness analysis in

the cases of multilinear and polynomic parametric uncertainty (i.e. the

closed loop characteristic polynomial depends multilinearly and

polynomially respectively on the parameters) is given. The latter cases are

most important from practical considerations.

Some novel modifications in this algorithm which result in a procedure

of polynomial time behavior in the number of uncertain parameters will be

outlined. Finally, we show how the more general problem of robustness

analysis for combined parametric and dynamic (i.e. unmodeled dynamics)

uncertainty can be reduced to the case of polynomic parametric

uncertainty, and thus be solved by means of our algorithm.

*To be presented at the 3rd Annual Conference on Aerospace

Computational Control, 0xnard CA, August 1989.
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Computational Issues in the Analysis of Adaptive Control Systems

Robert L. Kosut
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Abstract

Adaptive systems under slow parameter adaptation can be analyzed by

the method of averaging. This provides a means to assess stability (and

instability) properties of most adaptive systems, either continuous-time or

(more importantly for practice) discrete-time, as well as providing an

estimate of the region of attraction. Although the method of averaging is

conceptually straightforward, even simple examples are well beyond hand

calculations. Specific software tools are proposed which can provide the

basis for user-friendly environment to perform the necessary computations

involved in the averaging analysis.
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EIperimental Experience with Flexible

Gary J. Balas
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Structures

Abstract

This paper will focus on a flexible structure experiment developed at

the California Institute of Technology. The main thrust of the experiment is

to address the identification and robust control issues associated with large

space structures by capturing their characteristics in the laboratory. The

design, modeling, identification and control objectives will be discussed

within this paper. Also, the subject of uncertainty in structural plant

models and the frequency shaping of performance objectives will be

expounded upon. Theoretical and experimental results of control laws

designed using the identified model and uncertainty descriptions will be

presented.
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A DISTURBANCE BASED CONTROL/STRUCTURE DESIGN ALGORITHM

Mark D. McLaren 1

Gary L. Slater 2

Department of Aerospace Engineering and Engineering Mechanics
ML # 70, University of Cincinnati, Cincinnati, OH 45221

1 Introduction

In the past, the structure and its control system have been designed independently. Structural design and

optimization, and control system design and optimization, have each been areas of separate research, each

progressing vigorously along its own path. However, spurred on by recent proposals of new, large, highly

constrained space structures, the question has arisen as to whether an integrated structural/control design
procedure might not be more appropriate. The first papers actively investigating the question of simultaneous

structure and control design began appearing in the literature around 1983 [1,2,3]. Since then, there has been

a growing interest in this subject from other authors, although the field itself is still in relative infancy. Using

a conventional design approach for a controlled structure, one would first optimize the structure alone, then
design a control system for this baseline structure. This process may then be iterated until both the structure

and control system meet necessary constraints and objectives.

Some authors ([4,5,6,7], for example) take a "classical" approach to the simultaneous structure/control
optimization by attempting to simultaneously minimize the weighted sum of the total mass and a quadratic

form, subject to all of the structural and control constraints. In this paper, the optimization will be based

on the dynamic response of a structure to an external unknown stochastic disturbance environment [8]. Such

a "response to excitation approach" is common to both the structural and control design phases, and hence
represents a more natural control/structure optimization strategy than relying on artificial and vague control

penalties. The design objective is to find the structure and controller of minimum mass such that all the
prescribed constraints are satisfied.

Two alternative solution algorithms will be presented which have been applied to this problem. Each
algorithm handles the optimization strategy and the imposition of the nonlinear constraints in a different

manner. Two controller methodologies, and their effect on the solution algorithm, will be considered. These

are full state feedback and direct output feedback, although the problem formulation is not restricted solely to

these forms of controller. Ill fact, although full state feedback is a popular chQice among researchers in this field
(for resons that will become apparent), its practical application is severely limited. The controller/structure

interaction is inserted by the imposition of appropriate closed-loop constraiuts, such as closed-loop output

response and control effort constraints. Numerical results will be obtained for a representative flexible structure

model to illustrate the effectiveness of the solution algorithms.

2 General Problem Formulation

The integrated control/structure design optimization problem can be stated as follows: find the vector of

structural and controller parameters that mininfizes tile mass of the structure subject to a set of prescribed
stochastic disturbances, with limitations on the available control energy and on a set of allowable output

responses. This can be written in the form of a nonlinear mathematical programming problem as

1Graduate Student
2Professor
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Minimize, with respect to p, the weight J(p), subject to

g(v) < o

= Fz +Gu + Gww

EM. w,y_,l

Yd, = Hd, :t

1 < 0 for i = 1,...,n_ (1)

where

P

g
Z

F

G

e,tl_

_cci

1_ i

gOCt

Oq

Wi

Ydi
Hdi

Pl

Pu

Pl <- P <- P.

m an N-vector of design variables,

is an m-vector of structural constraints,

_s an n-vector of state variables,

is an n.-vector of control forces,

Is an nw-vector of stochastic disturbances,

is the (n x n) matrix containing the system dynamics,

is the (n x nu) matrix containing information on the

locations and orientations of the actuators,

is the (n x n,) matrix containing information on the points
of application and orientation of the disturbances,

is the i th control effort constraint cost function,

is the n,,-order partition of u representing the control

forces involved in gee,,
is the maximum allowable value of the i th expected control

effort function E[uTRiui],

is an (n., x n.,) control force weighting matrix,
is the ita output response constraint cost function,

is the maximum allowable value of the i th expected output

response function E[y_ WiyaJ,

is an (nd, x nd,) output response weighting matrix,

is the i t_ design output nd,-vector,

is an (ha, X n) matrix giving the relationship between

the state variables and Ya,,
is an N-vector of minimum design variable values, and

is an N-vector of maximum design variable values.

The side constraints are the strict bounds Pt and p,, on the design variables, and are vector inequalities
that are imposed element by element. These design variable bounds are not included explicitly as constraints

in the problem formulation. Note that the structural weight and the structural constraints g will in general

not be functions of the controller design variables unless the controller mass is included in the design. Note

also that gee. is a weighted mean square control effort, and goe, is a weighted mean square output response.

Multiple output response constraints are allowed, although only one of these will in general be active at the

optimum design. However, all of the control effort constraints will generally be active at the optimum design.
In this work w is a zero mean Gaussian white noise disturbance with covariance )(7,o. The structure will

respond to this disturbance with some transient behaviour, in addition to a steady-state response. It seems
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reasonable to optimize the structure for the steady-state response to the disturbance rather than the transient

response because the transient behaviour will normally be of secondary importance to the response objectives

(such as long term pointing accuracy). Also, for steady state optimization, the differential equation constraint

(state equation) can be replaced with a steady state covariance equation, so that the control effort and output
response constraints may be recast in terms of this covariance. Therefore the two-point boundary value problem

is eliminated and the numerical solution of the problem is significantly simplified.

2.1 Full State Feedback Control

The simplest form of feedback control is to feedback the entire state vector, with u = -Kz, where K is the

(nu x n) state feedback gain matrix. The controller design variables for this case will be the nun elements

of K. Substituting this control into the state equation, and assuming that the disturbance w is zero mean

Gaussian white noise, the state covariance matrix X for this case can be found from the Lyapunov equation

FaX + XF T + GwX.G T = 0 (2)

where Fa = (F - GK) is the stable closed-loop dynamical matrix for the full state feedback case, X = E[zz T]

is the (n x n) symmetric state covariance matrix, and Xw = E[ww T] is the (nt_ x nw) symmetric covariance
matrix for the stochastic disturbances.

Expressions for the controller constraints in terms of this covariance matrix can then be obtained as

tr[KT R_KiX]

g¢¢, = /_ - 1 for i = 1,..., n_ (3)

tr[H_Wigd, x] 1 for i= 1,... ,n_ (4)
goc, -- o_

where Ki is the (n_,, x n) partition of K corresponding to ui. It is assumed that the ui are independent, and
that u and K are ordered as

-I .-- "L ], [ A'T ... I;L ] ¢5)
Note that na = and that the columns of G can be interchanged to force condition (5) to be satisfied.Ei=I nut nu,

Using full state feedback, the first-order necessary (Kuhn-Tucker) conditions for optimali.ty can be analytically

solved to give [8]

K = R-1GTAz, where FTA= + A=F - AxGR-1GTAx + W = 0

and where R and W are respectively the (nu x nu) and (n x n) matrices defined as

(6)

R = diag R_ , W = __, g Td,W_ gd, • (7)
t\ i ) i=,

The variables )_u, and "_w come from the Kuhn-Tucker conditions, and are the Lagrange multipliers associated
with the i th control effort and output response constraints respectively.

Equations (6) define the solution to the optimal control problem

rain Jr = [zTwg_ J¢-I_TRu] at (8)

where K is the optimal steady-state gain matrix, and A= is the steady-state solution to the associated Riccati

equation. Although this LQR property only holds true at the optimum point, it is computationally convenient

to assume that at every point in the design cycle, the control design variables will be found as the solution to the

optimal control problem (8). Therefore, the numerical optimization problem can be reduced to optimization

over just the structural design variables, along with an optimal control problem solution which will be a function

of the Lagrange multiplier vectors ,X, and ,Xy. The immediate benefit of this is a reduced dimensionality
nonlinear programming problem. In addition, since the regulator solutions always give a stable closed-loop
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system,noexplicitcheckmustbeperformedon thesystemstabilityduringthesolutionprocedure.TheLQR
assumptionin thisprobleformulationissimilarto theapproachtakenin [9,10],andothers,whereR and W

are fixed, and not chosen to satisfy the constraints.

2.2 Direct Output Feedback Control

For most real systems, the state vector will be very large, and the use of full state feedback would result in a

controller of unacceptably high dimension, assuming additionally that the entire state is available. However,

usually only a small subset of the system states will be available to the designer, in the form of the output

measurement vector. These can include actual system states along with linear combinations of the system

states, in the form y = Hx, where y is the ny-vector of outputs and H is the (ny x n) output matrix giving the
relationship between the outputs and the system states. If these output states are to be used in the feedback

loop, the resulting control is termed direct output feedback, with the control forces defined to be u = -Ky,

where K is the (nu x n_) output feedback gain matrix. In this case, the controller design variables will be the

nun v elements of K.

Substituting this control into the state equation, the state covariance matrix X for this case can be found

as the solution to the same Lyapunov equation (2), except that now the closed-loop dynamics are given by

Fct = (F - GKH). Note that since K does not satisfy any special conditions (such as the LQR conditions),
the closed-loop system Fct is not guaranteed to be stable for any K. If Fct is unstable at any stage in the

solution procedure, the covariance matrix X cannot be found from equation (2). Therefore, for this case, hard

constraints on the closed-loop system eigenvalues must be imposed at every step in the design proceedure.

"Hard" in this sense means that special precautions must be taken in the solution procedure such that these
constraints can never be violated.

Expressions for the controller constraints for direct output feedback in terms of the covariance matrix can
then be found to be

tr[H T Ki T RiKi HX]

gc_, = 13_ - 1

tr[H_ Wi IId, X]
go_, : 2 - 1

for i = 1,...,n o (9)

for i= 1,...,na (10)

3 Solution Algorithms

In the general problem formulation presented in the previous section, the constraint functions are generally

highly nonlinear implicit functions of the design variables. Solution of this problem could be attempted by the
direct application of nonlinear programming techniques; that is, using the exact functional expressions for the

constraints, ttowever, this approach quickly becomes computationally very expensive as the dimensionality

increases since the full objective and constraint functions must be evaluated at every step, and their respective

gradients at most, if not all, steps thoughout the design procedure. Such evaluations tend to be computationally
very expensive.

Approximation techniques, where the implicit nonlinear problem is replaced by a sequence of explicit

approximate (although not necessarily linear) problems, have been shown to yield efficient and powerful al-

gorithms for structural design optimization (see, for example, [11,12]). In this paper, two solution techniques

based on approximation techniques will be tested on the integrated control/structure design optimization prob-

lem. The methods will be compared with respect to the ease of use, generality of application, and numerical
robustness to changes in move-limits and other solution parameters.

3.1 Sequential Nonlinear Approximations

In this method, the fully constrained nonlinear optimization problem is solved by the iterative construction

and numerical solution of a sequence of explicit approximate problems. The approximate problems are first-
order Taylor's series expansions (with respect to either the inverse design variables ([13], for example), or with

respect to hybrid design variables [14]) of the objective and constraint functions. Depending on the intermediate
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variableschosen,the approximate functions may still be nonlinear functions of the design variables. Therefore,
the numerical solution is accomplished using a mathematical programming code, specifically the modified

method of feasible directions as implemented in ADS [15].

The solution process begins with some initial structure, which is analyzed using the finite element technique.

At this point, the gradients of the active constraint set are evaluated, and the approximate problem is formed,

with respect to the current design. Expressions for the gradients of all constraints considered can be evaluated

analytically. The approximate problem is solved with ADS using an active constraint set strategy to reduce
the dimensionality of the approximate problem by deleting the inactive constraints. Move-limits on the design

variables are imposed during the solution to ensure that the design remains within the region for which the

approximation functions are of acceptable quality. The choice of move-limits and how they change can have a

significant effect on convergence, and will often be determined from numerical experience with the particular

problem at hand.

After the solution of the approximate problem, the structure and its control system are deemed optimal

if a convergence test on either the absolute or relative objective function change over a specified number of

successive global iterations is satisfied. Otherwise, the objective and active constraint gradients are evaluated
for the new design, a new approximate problem formed, and the process above is repeated in an iterative

manner. The solution procedure ends when the design variables converge, or when the number of iterations

exceeds some preset maximum.

Scaling the structure and controller to the closest constraint surface may be possible in some cases, because

of the special assumed form of the controller. Scaling to structural constraints has been performed in other

work (see [16]) and will not be covered here. If full state feedback is used, it is possible and practical to scale
the structure to the closest control effort constraint and closest output response constraint simultaneously. The

variables with which the structure is scaled are the structural design variables (elemental areas or thicknesses),

and the Lagrange multipliers associated with the two controller constraints ,_u and _v (where for clarity, and

without loss of generality, the subscripts on the ,Vs that refer to the particular control effort or output response

constraints under consideration have been dropped).

Note that changing the values of )_u and _u cannot independently change the values of urn, = tr(KTRKX)

and yrns = tr(H_WHdX), because in the LQR problem, only the ratio of _,, to _u is important. One can

choose the ratio (,_/,_u) to satisfy one of the control constraints -- say urn,. Then yrn, will not in general be
satisfied. Suppose yrn, is too large (i.e. _/rn, > e_2) at the particular point where urn, is satisfied. Then the only

way one can satisfy the yrn, constraint is to increase the sizes of at least some of the structural members. This

seems reasonable because if the control constraints could be satisfied by simply choosing appropriate controller

parameters, then there would be no interaction between structural optimization and controller optimization.

Intuitively, it can be seen that this is not the case. Note that each member of the structure will be scaled

by the same amount to fulfill our goals. Obviously, this method is not absolutely mandated, and some other

approach could be used where the design variables are not scaled equally. However, this would then be resizing

rather than scaling, a process normally left to the nonlinear programming algorithm.
The final scaling aim is to set urn, = f12 and yrn, = _. To perform the scaling, it is assumed that, at

iteration i, the values (urn,)i and (ym,)i will change, as a result of changes to (_)i and the (Pj)i, according
to the equations

(Urns)i+1 a, _bi (Yrns)i-t-1 c, 6d, (11)
(urn,)i - A'+I '+" _ a,+, ,+,

where ai, bi, ci and di are constants, and where

Ai4-1- (au)i'l'l _i+l (Pj)i+a (12)
-

If initial (educated) guesses for these constants can be made, they can be updated in an adaptive manner

during the scaling proceedure.
Move-limits are imposed on the design variables during each approximate problem solution. This is done

in an attempt to restrain the design variables to a region in which the explicit function approximations remain

reasonably accurate. However, deciding how to impose these move-limits is a non-trivial task. The local curva-

ture of the design space (i.e. how nonlinear are the actual constraint surfaces in the region about the expansion

point of the approximations) will determine the move-limits, with more strict move-limits applied in regions
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of highcurvature,and less strict move-limits imposed in regions of low curvature. Since second-derivative
information is required to estimate curvatures, and since such evaluations are very expensive computationally,

imposing move-limits is usually reduced to an art based on past experience. Quasi-Newton methods obtain the

second derivatives using only first derivative information, however, these methods typically take N iterations

to fill the Hessian, and can be very costly if N is large.

For the purpose of this work, a move-limits factor "r is imposed in an exponential form. If the current design

variable and approximation expansion vector is p, then the upper and lower bounds on the design variables

for the current approximate problem are defined as

1 (13)Pu = 7P, Pt = -P
7

where 7 >- 1. The limits specified in equation (13) must be imposed element by element. Note that since

the design variables in this example will be structural design variables only, they are restricted to be positive.

Obviously, equation (13) must be modified if the design variables can be negative. The exponential form of
the move-limit factor is defined by the particular choice of 7,ni_, and 7,ha: (typically 1.2 and 1000 respectively

in this work).

3.2 Continuation and Sequential Linear Programming

The complex nature of the constraint functions in the nonlinear optimization problem, especially the con-

troller constraints, leads to various convergence problems in the context of a classical gradient based nonlinear

programming code such as ADS. As the problem dimensionality increases, convergence will usualy become

increasingly difficult to accomplish, as step sizes reduce to satisfy the local linearity assumptions inherent in

gradient based solution techniques. Another method for the solution of mathematical programming problems

that has recently become popular is the use of continuation methods to impose nonlinear constraints cou-

pled with sequential linear programming (SLP) [17,18]. The continuation procedure is a conceptually simple

method of applying restrictive constraints gradually from less restrictive ones, which replaces the most de-

manding constraint functions of the form g(p) __ O, by a set of neighbouring constraint functions _i, defined

by

a_(V,, 7,) : g(Vi) - (1 - 7a)g(Po) _ 0 for i : 0,..., m

where P0 is the arbitrarily chosen" initial design point, and "ri is a continuation parameter satisfying

(14)

0 :'g0 _ 3'i _ "'" < _M = I (15)

Note that for 3'o : 0, when p = P0, the new constraint function g0 is identically satisfied. If convergence

is acheived for 7 : I, then the original constraints will be recovered in M steps. The step size A 7 = 3'/-- 7i-1

(and hence M), can be chosen small enough so that assumptions on local linearity can be almost arbitrarily
satisfied.

Linear Programming (LP) methods are a powerful approach to handling a large number of locally linear

constraints, and due to the wide availability of very efficient LP codes, are an attractive alternative to nonlinear

programming methods. The neighbouring problems generated by the continuation procedure can be written
in the form

Minimize J(Pi), subject to {_i(Pi,'_i) __ 0 (16)

To transform these equations into a linear programming problem, the equations are linearized about the current

point Pi, and move-limits on the maximum parameter changes allowable locally are imposed. Expanding the

objective and constraint equations in (16) to first order in a Taylor's series expansion about Pi gives the locally

linearized problems in linear programming form as
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Minimize,with respect to Api, AJ_ = [O_pJ ] Api, subject to
Pi

+ g(V,) _ (1 - < 0
0V Jr,

(17)

-¢ < Api _ •

for i = 0,..., (M - 1). All elements of c are assumed positive, and the vector inequality is imposed element
by element.

The algorithm begins with an initial structure, which is analyzed using the finite element technique. The

initial problem (70 = 0) is solved, and the continuation parameter 7 is incremented from 70 = 0 by A 7 to

71. Note that if initially K = 0, so that the control effort allowed for the initial local problem is zero, this
initial problem becomes a pure structural optimization subject to the dynamic output repsonse constraints.

The increment A 7 is set by an a priori choice of M, the number of continuation steps, although A 7 need not
be constant throughout the solution procedure. Successful implementation of the continuation method has

been reported when A 7 was chosen as initially quite small and increased to a larger value during the solution
[18]. The choice of A 7 is closely coupled with the choice of the nominal design variable move limit vector e0.

There is in fact a tradeoff between the satisfaction of the local linearity assumption through e, and the ability
to converge to the neighbouring problem through A 7. Usually, for each particular problem, some numerical

trial and error will be required to find those values of e0 and A7 that yield an efficient solution technique.

The gradients of the objective and constraint functions are calculated at the current design, and then the
associated linear programming problem (17) is solved by a linear programming code. In this work, the linear

programming routine E04MBF from NAGLIB (National Algorithms Group LIBrary) was used, although other
routines inserted at this point should provide the same solution. Since the local linearity assumption will

never be exactly satisfied, the actual constraint values at the new point, specified by the solution to the linear

programming problem, will be different than that predicted. Therefore, the constraints _ may not be satisfied
following the linear programming solution step.

Since a converged subproblem solution is required before increasing the continuation parameter, this local

problem is iterated locally until convergence is obtained. At each local iteration, new gradients are calculated,
and the move limits on the design variables are reduced so that • = ceo, where a value of c = 0.75 was used

in this work. If convergence to the local problem does not occur within 15 iterations (where move limits are

about 1% of their nominal values), the move limits are increased to their nominal values e0, and the local

iterations are repeated. Numerical experience with this algorithm has shown that this procedure is flexible
enough numerically so that converged subproblem solutions can be obtained in a reasonable number of local

iterations, as long as the neighbouring problems are "close enough". Practically, this means that either the

constraint values of the initial system should be "close" to their final desired values, or that M should be
large. Once the local problem has been solved, the continuation parameter 7 is incremented, and the new local

problem solved as before. At the M th continuation step, 7 = 1 and the original problem is recovered, so that

the solution to the M th local problem is the solution to the original problem.

If closed-loop stability constraints are violated at any stage in the solution procedure, these must be

imposed immediately. To achieve this, it is possible to employ a method that never requires the calculation of

the closed-loop eigenvalue derivatives, saving considerable computational expense. Of course, if in addition to

overall stability there are constraints on closed-loop damping ratios or bandwidth, then the evaluation of the

closed-loop eigenvalue derivative may be necessary at some point. The method used in this paper is to simply

bisect Api and perform another analysis until a stable system configuration is obtained.

4 Gradient Analysis

For the numerical optimization procedure to be practical, especially as the dimensionality increases to realistic

structures, it is essential that it be possible to evaluate the first-order sensitivities of the complex constraint

functions in an efficient manner. The objective function (the weight) is a linear function of the finite element
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thicknessesand/orcrosssectionalareas(fortrusstypefiniteelements),sothatits gradientiseasyto calculate
at anypointin thedesignspace.

4.1 Gradients for the case of Full State Feedback Control

The gradients of the controller constraints with respect to a structural design variable pj are given by

1 ]Opt - _trtk--_--pj .+KTP_ x+p,u_

Ogo_, 1 r/OH_ OHd,) ]cops a2i tr [ _--_-pj W, Hd, + H_.Wi _ X+QiT_j

where 7_i, Qi, and "Hi are evaluated using the following set of equations:

(18)

(19)

FTT)i + PiF¢_ + KT RiKi = 0

F_ p._+ QiF., + n_. W,Hd. = 0
r OG,. T OG_ 1

n_: t_7_[°F"x+XOF:'Opt+-gy?pX_G.+a_X.-_7_]

_( c°K)OF_r OF oa K - -g_p_]OPt _ OPt

OK _ R_ 1 [OGTA_ OAr]
OPt L Opj + GT-_pj J

*' Op---f N N K A. 4- A_ _pj

(20)

(21)

(22)

(23)

(24)

(25)OaK) + owlOp_

Note that gradients with respect to controller design variables need not be evaluated since these design variables

were effectively removed from the optimization problem by the LQR constraint.

4.2 Gradients for the case of Direct Output Feedback Control

The gradients of the controller constraints with respect to a structural design variable pj are given by

Og¢c, __ -_trl[(O_TjKiT"RiKiH + HTKiTRiKi_pj)X + YiJ_j]

Ogoc, _ ltr r,'o._ ._ w,o..,_ ]

where 32i, Zi, and 3/j are evaluated using the following set of equations:

(27)

(28)

T HTKirRiKiH 0Fg,Yi + YiF¢, + =

FT z_ + ZiFc, + H_ W_H,_, = 0

[OF¢_x+xOF_tTOG'_T _p_.]z_:t-_-_p_ _ +-gy?_xoao+a.x. .

OF_, OF OG KH -- _p_ jOp_ _ Opt

(29)

(30)

(31)

(32)
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The gradients of the controller constraints with respect to the elements of the gain matrix K can be written
in matrix expression form as

Z xn T/

Ogoo,_ 2__,[GTz,Xn']
OK a i

Os] Oswhere, for scalar s and matrix A with elements aij, _ ij Oaij and where

R:_=diag {0 -.. 0 R_ 0 -.. 0 }(,,×,_,)

Note that the R4 in equation (35) is of order (nui x nu,), and is in the i th diagonal block of _.

(33)

(34)

(35)

5 Example: The DRAPER I Teterahedral Truss Structure

The DRAPER I structure [19] is a tetrahedral truss attached to the ground by three right-angled bipods, as
shown in Figure 1. Although attached to the ground, this model will act as a typical flexible structure pointing

subsystem (e.g. antenna, radar, optical) attached to a rigid core. Any motion would then be with respect to

this rigid core, and transmit forces to it. Consequently, this model has no rigid body degrees of freedom. The
finite element model has 12 truss elements, since the joints are pinned and transmit no moments. There are

four nodes that are free to move in all directions, so the model contains 12 degrees of freedom. The structural

design variables are the cross-sectional areas of each of the 12 truss elements. Since there are 12 degrees of
freedom in the model for this structure, the state-space model will be 24 th order. There will be 6 inputs

corresponding to the 6 legs of the structure, and a varying number of outputs, depending on the problem at
hand.

For the purposes of this work, material parameters of p = 0.1 Ib/in and E = Young's Modulus = 20 kpsi

were used. The dimensional values E and p were chosen to give initial numerical values of structural frequencies

for the dimensional model roughly comparable to those of the non-dimensional model. The model contains

no nonstructural mass. Elements 7 through 12, the three right-angled bipods, take on the duties of force

actuators (and possibly colocated velocity and/or displacement sensors). Only one output response constraint

is defined (ha = 1), with the design output vector Yd representing the line-of-sight error of the top vertex [(x, y)

displacements of vertex 1]. The disturbances, labelled wl and w2 in Figure 2, are assumed to be independent,
zero mean, Gaussian disturbances with intensity 1.0.

The damping added to the state space system will depend on the state space realization used. For cases

vChere a realization based on physical variables is used, the damping matrix C is formed to be C = 0.1M +
0.001K,, For cases where a realization based on modal variables was used, the damping ratio of each mode

was specified to be 0.1% of the modal frequencies during the formation of the state matrices. The weighting

matrices R and W are set to the identity matrices, so that equal weighting is given to all components of u and

Yd" The minimum cross-sectional areas for all elements was specified as 0.1 in 2. For this problem, no static

structural constraints were specified in this model of the DRAPER I structure, the intent being to investigate

the effect of the closed-loop controller constraints on the structural design optimization.

5.1 Full State Feedback Control

In this section, the sequential nonlinear approximations solution algorithm, with the addition of the scaling

procedure outlined in Section 3.1, is applied to the full state feedback control of the DRAPER I structure.

The effect of the scaling procedure used here can be determined by applying the sequential approximations

algorithm in the form of a direct output feedback problem with H = I with no scaling assumed. The
continuation solution algorithm is also best handled in the form of a direct output feedback problem since

no special scaling is assumed. Both solution algorithms applied to the case of full state feedback are discussed

in Section 5.2, where direct output feedback control is considered. For brevity, only limited results for both
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controller methodologies are presented in this paper, but a full discussion of this example can be found in

reference [20].

Runs were made optimizing the DRAPER I structure using an inverse design variable approximation for
all constraint functions. The initial structure was defined with all structural design variables set at 10 in 2, and

with the Lagrange multipliers Su and _y set at 1.0. This set of initial conditions will be termed the symmetric
set of initial conditions, for they specify a structure with a number of vibrational modes of the same frequency

(repeated eigenvalues). A range of allowable expected output response (a 2) of 1 x 10 -s in 2 to 1 × 10 -4 in 2 in
steps of 1 x 10 -4 in 2, and allowable expected control effort (/_2) of 50 Ib 2 to 80 lb 2 in steps of 10 lb 2 were used.

Table 1 summarizes the resulting minimum weight in pounds found for the case where a state-space real-

ization based on the modal displacements and velocities was used. Intuitively, two trends would be expected

in the data displayed in Table 1. The optimum weight should decrease as the allowable control effort _2 is

increased at constant allowable output response a 2 (left to right across the table), and the optimum weight
should decrease as the allowable output response a 2 is increased at constant allowable control effort/5/s (down

the table). With reference to Table 1, we can see that this trend is observed in a macroscopic sense only, there

being several examples where this trend is not observed. For example, considering the first column of Table 1,

which corresponds to _2 = 50 lb 2 for varying a s, we see only two exceptions to the expected trends, these

being at a_ values of 6 x 10 -5 and 9 x 10 -5. Similar results are observed in all other columns and rows of
Table 1. Results obtained using a state-space realization based on the physical displacements and velocities of

nodal points are more consistent than when using the modal variables, although still not totally uniform. It

might be pointed out that the results when using a physical realization were consistently easier to obtain, there

being no need to alter the nominal value of 7rain to obtain convergence, and the number of global iterations

required for convergence being consistenty lower.

Some understanding of these contradictory results can be found by considering Table 2, which gives the

optimal element areas found for j32 = 50 and for the varying a _ corresponding to the first column of Table 1.

Also given in this table is the number of global iterations required for convergence, the final values of the

Lagrange multipliers (which then defines the LQR controller), and the initial value of the structural design

variables (all the same for the symmetric set of initial conditions) at which the initial scaled system satisfies the
constraints. Immediately apparent from Table 2 is a number of seemingly separate regions of the design space
into which this structure has converged. For example, the final designs for a2 = 5 x 10 -s and a 2 = 7 x 10 -5

seem to be similar in relative structure. Here, "similar" refers to the relative sizing of the structural members,

in that design variables that are "larger" in one design are "larger" in the other. Both these designs are
however distinctly different from those for ct2 = 1 x 10 -5 and a s = 3 x 10 -s, which themselves are similar.

The conclusion seems to be that we are converging into different regions of the design space with our solution

algorithm, and that there are numerous local minima. Several columns of Table 2 seem to define their own

region of the design space, being dissimilar to any other column. In other words, our design space seems to
have multidimensional corrugations leading to multiple local minima. The solutions will lie somewhere on the

intersection hyperplane between the surface of constant allowable output response and the surface of constant

allowable control effort.

This corrugated nature of the design space can be illustrated by considering the solutions obtained, for the
same constraint case, when starting from different initial conditions. For the case of _32 = 75 and a 2 = I x 10 -5,
Table 3 summarizes the results of runs made when modal state space realizations were used, and when only the

initial conditions are varied. The different initial conditions are defined by setting all structural elements equal

except the first (element 1), to which is added a percentage of the size of other elements. Even with this limited
variation in the initial conditions, there are seemingly many distinct regions in the design space into which the

system may converge. A picture of the constraint surfaces as a one-dimensional slice of the multidimensional

space will emerge if these optimal structures are varied into each other in a linear fashion, and the constraint
values are calculated between each case. That is, the structural design variables and Lagrange multipliers are

changed linearly from the optimal values in one case to those in another case. Then the constraint surfaces
obtained would be those seen when travelling in a straight line between each successive point.

The results of such an analysis are shown in Figures 3 for the cases corresponding to those given in Table 3.

As expected, the weight varies linearly between the cases, but it is the constraint curves that are much more

revealing. For example, considering Figure 3, one can see that between case 1 and case 2, there is a "ridge"

of output response larger than the maximum allowable value. Similarly, the control effort first decreases, then
also increases to a ridge of high value. This corresponds to a hump in the constraint surfaces between the two
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pointsin thedesignspace.Assumingthatwewouldseesuchbehaviourwhenmovingineverydirectionaway
fromcase1andcase2,ratherthanjust ina directionbetweenthetwoasshownin Figure3,thenthedesign
pointscorrespondingto thesecaseswouldrepresentlocalminima.In thissituation,thedesigncanbecome
"trapped"insucha locallyconvexregion,causingthesolutionalgorithmto convergeto differentpoints.

With referenceto thesameFigure3,onecanseethat both theoutputresponseandcontroleffortsare
virtuallyconstantbetweencases2 and3, whilethe weightincreasesslightlyfrom 2053.0Ib to 2090.6lb.
Thisindicatesthat case2 andcase3actuallyrepresentthesameoptimalsolution,with thedifferencebeing
accountedfor in thevarianceallowedby theconvergencecriteriaused.Thedirectionin thedesignspace
representedbythemovementfromcase2 to case3wouldliein theintersectionhyperplaneof thesurfacesof
constantcontroleffortandoutputresponseconstraints,andwouldbeat ashallowangleto the linearsurface
of constantweight.Figure3 graphicallyillustratesadesignspacethatis averycomplicatedfunctionofthe
designvariables,inwhichmultiplelocalminimaabound.

Therearesomeotherteststhat canbemadeon thehypothesisthat thedesignis becomingtrappedin
localminima.If thedesignisactuallytrappedina localminimum,thesolutionshouldstayin thevicinityof
that minimumif theproblemis changedonlyslightly.That is,if aconvergedsolutionis usedastheinitial
conditionsforanoptimizationrunwheretheconstraintobjectivesarechangedbya "small"amount,thenthe
newproblemshouldconvergetoapointthatis"closeto" theinitialpoint.Table4representssuchasituation.
Here, the solution was first obtained for the case where/_2 = 50 and c_2 = 1 x 10 -5, and where a modal state

space realization and inverse design variable approximations were used. This converged solution was then used

as the initial conditions for the cases/_2 = 50 and a 2 = 2 x 10 -s, and 82 = 60 and c__ = 1 x 10 -s. Moving
down each column, and across the top row, of Table 4, the converged solution from the previous case was used

as the initial condition for the new problem. As can be seen from Table 4, the two expected trends in the data,
as mentioned previously, are now observed without exception. The optimal solutions for the first column of

Table 4, corresponding to the cases where/_2 = 50, are given in Table 5 The solutions now appear to be in

the same local region of the design space, as evidenced by the relative sizing of the optimal structures. For

example, note that in all converged designs, structural elements 9, 10, and 12 are at their lower gage limit of
0.1 in s, and that the first structural element is the largest by far. The optimal solutions for the/_2 = 60 cases

from Table 4 also appear to be in this same region of the design space. These results test the hypothesis that

designs are converging to local minima, and indicate that the local optima are real and not simply figments of
a numerical imagination.

5.2 Direct Output Feedback Control

Recall that when using direct output feedback, no simplifying assumptions can be made regarding the controller

design variables (elements of K), such as the LQR assumption used in the case of full state feedback. Therefore,
no scaling of the structure and controller to the closest constraint surface is performed. If a full state feedback

case is to be solved in the form of direct output feedback with H = [, the number of design variables will
increase significantly over the number of design variables created when other types of controllers are considered.

This is because the number of states in the plant model will generally be large for anything but trivial systems,
hence K will have many elements, all of which will be treated explicitly as design variables. However, such a

situation is considered here to aid a comparison between the two solution algorithms, and the results obtained

in the previous section. For the continuation algorithm, convergence was obtained after the specified number

of global iterations, set by the specification of A 7. Also note that, since only one each of the output response
and control effort constraints are specified at this stage (ha = 1, n_ -- 1), these can both be set as equality
constraints without loss of generality since they will both be active at an optimum.

Table 6 gives the optimal weights found using the sequential approximations solution algorithm in the case
when a physical state space realization and inverse design variable approximations are used, for/_2 = 50 and

/_2 = 60, and for varying a 2. Compared to the similar case when scaling was performed, the optimal weights
found here are larger in every case. Additionally, the solution times were significantly larger because of the
number of iterations required for convergence. Note that some values in Table 6 are for situations where an

average steady state value was obtained, but where the design was jumping around too much over each global
iteration for convergence to occur. This was so even though the move-limits for every case in Table 6 were

set at a relatively small :1:2.5%. A smaller move-limit would aid convergence, but slow it considerably. Also,
smaller move-limits may cause premature convergence if the design is at a point where the constraint surfaces
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andthesurfaceof constantweight are nearly parallel.

Table 7 gives the optimal weights found using the continuation algorithm for the same cases listed in Table 6.
All cases listed were obtained with the continuation parameter A7 = 0.01 until 3' = 0.5, when A7 became 0.02,

so that for every case convergence was achieved in 75 global iterations. Also listed in Table 7 are the move-
limits on the maximum parameter changes allowable locally (t in Section 3.2). These are set to give a tradeoff

between the satisfaction of the local linearity assumption and convergence to the local neigbouring problem,

and must be found by numerical experimentation. Note that in both situations represented by Tables 6 and

7, minimum move-limits on the elements of K are set so that these elements can change sign if desired.

The solutions given in Tables 6 and 7 were obtained when the initial structure was defined with all truss

elements of equal cross-sectional area. The particular values for this area are given in Tables 6 and 7 for

each case, and were chosen so that the initial output response was "close to" its desired final value. With
all structural elements at 120 in 2, 90.0 in 2, and 60.0 in 2, the initial output responses were 2.067 x 10 -5,

3.674 x 10 -s, and 8.266 x 10 -s respectively. The initial control effort was zero of course, since all elements of

K were set initially to zero.

Comparing the optimal weights from Tables 6 and 7, it can be seen that those obtained using the con-
tinuation solution algorithm are significantly lower than those obtained using the sequential approximations

solution algorithm in every case. The optimal weights are also much more consistent, in terms of the expected
trends as a 2 increases, when using the continuation method. Convergence was obtained for every case listed

in Table 7, whereas for three of the cases listed in Table 6, no convergence was obtained within 300 iterations.
The reason for the convergence failure can be illustrated by considering the convergence histories given in

Figures 4 and 5, for typical cases from Tables 6 and 7 respectively. The inset in Figure 4 shows some of the
histories toward the end of the solution in more detail. These can be seen to bevery rough, as compared to

the histories in Figure 5 which are smooth everywhere. These parameter oscillations for the sequential approx-
imations solution technique are indicative of a move-limit set too high, so that the local linearity assumption

is violated. However, since the convergence is very flat toward the end of the solutions, a smaller move-limit is

likely to cause premature convergence, or to significantly slow down the convergence for very little additional

objective reduction.

The optimal weights found using the continuation method listed in Table 7 compare very favourably with
those found for the same cases (/_2 = 50 and varying a 2) when the full state feedback LQR assumption was

used to simplify solution. In almost every case, the optimal weight is approximately equal to or lower than

those found earlier. However, the sequential approximations solution algorithm results are much worse, being

significantly larger than the optimal weights found earlier in every case. The sequential approximations solution

algorithm performs so poorly because it tends to become trapped in a local minimum close to the specified
initial conditions.

Consider now cases where the full state is not available for feedback. In the DRAPER I structure, the six

right-angled bipods are usually assumed to take on the duties of force actuators and colocated rate sensors, so

that H = G T (output state of dimension six). Tables 8 and 9 list the optimal weights found for this reduced-
order output vector for the same cases used in Table 6, when the sequential approximations and continuation

solution algorithms respectively are used. Note that the optimal weights consistently obey the trends that are

expected as the allowable output response and controller effort are altered. Even so, the designs can converge
into completely different regions of the design space for any particular case. This is illustrated by Table 10,

which gives the optimal structural design variables for the cases represented by the second column of Table 9.
Note that every solution does not define a unique local minima. Many of the solutions seem to lie in the same

local minima region, for example the solution for the case a 2 = 1,7, and 9x 10 -5. Once again, the design space

is found to have many local minima.
The two solution algorithms here seem to predict quite similar optimal weights for the cases considered,

although in general those found using the continuation method are slightly better. However, convergence for

the results using the sequential approximations solution algorithm were more difficult to obtain than those for
the continuation method. Altering the nominal move limits (set at =t:2.5%), and perhaps reducing it toward

the latter stages of each solution would aid convergence, but at increased effort on the part of the user. The
continuation results are easier to obtain since they require less individualized attention.

Comparing Tables 8 and 9 to Table 7, it can be seen that the optimal weights found when H = G T are

much larger than those found when full state feedback was used. The reason for this is the particular placement
of the disturbance forces relative to the design output states (which determine the output response). For the
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case considered here, the DRAPER I structure is disturbed at node 1, the displacement of which is to be

kept below the design objective value a s. With full state feedback, the displacement states of node 1 are

available for feedback, whereas if H = G T, these states are not available, and the effect of the displacement

of node 1 is available only indirectly through its effect on the velocities along the six bipods that make up

the sensors. The importance of these states can be seen by examining the optimal gain matrices for the full

state feedback case. The largest gains associated with displacements and velocities in these matrices appear

in the columns corresponding to node 1 degrees of freedom, indicating that the states associated with node 1
are very important. When they are not available, the controller does not have as much information about the

state of node 1, the node it is trying to control, as it does in the case of full state feedback, and will increase
the structural stiffness (and hence mass) to compensate.

To illustrate further, consider output feedback with the displacement and velocity states of node 1 added

to the output vector used previously. The optimal weights for the same/_s = 50 and /_2 = 60 cases used in

Table 9 with this new output vector (of dimension 12 now) are given in Tables 11 and 12, when the sequential

approximations and continuation solution algorithms are used respectively. There are now larger differences

between the weights found using the two solution algorithms than in the case when H = G T only, with the

continuation method giving the best results (with one exception). The weights obtained using the continuation

algorithm are now very close to those obtained when using full state feedback (in Table 7), although still a
little larger in every case. This is because even with this larger output vector, the displacement states for
nodes two through four are still not used in the controller.

All the results presented so far were generated with the external stochastic disturbance intensities set at

one (Xto -- I). If these intensities are varied as Xw = z_I, the effect of varying x_ on the optimal weight is
shown in Figure 6. These results were generated using the continuation solution algorithm, for the case when
a s = 1 x 10 -5 and fls = 50, and when Ml structural design variables were initially set at 120 in s. As can be

seen, the relationship between the disturbance intensity and the optimal structural weight appears basically

linear in the range shown. However, a linear fit of the data does not produce an optimum weight of zero for
a zero intensity disturbance, as would be expected. Therefore, the relationship cannot be exactly linear. The

results also indicate that the disturbance level chosen for the previous results (zw = 1) was significant for the
range of output response and control effort constraint objectives used.

As long as the neighbouring problems in the continuation algorithm were close enough, which was satisfied

by starting from an initial point where the constraint values were "close to" their final desired locations, no

difficulties were experienced in obtaining convergence. The solution times for the continuation algorithm were
2-3 times longer than for solutions by the sequential approximations algorithm, since on average approximately

8-12 local iterations were required for convergence to the neighbouring problem for each global iteration. The

performance of the sequential approximations solution algorithm decreases as the dimensionality increases, as
evidenced by the sequence of cases where H = G T (48 design variables), H = G T plus node 1 displacement

and velocity states (84 design variables), and H = I (156 design variables). However, the continuation method

seemed much less sensitive to the problem dimension. The continuation solution method was found to be

generally superior, for this problem at least, to the sequential approximations solution method, with respect to

the confidence in obtaining a "good" converged solution. The disparity in solution times was acceptable because

of the ease with which solutions were obtained using the continuation method, and because the solutions found

seemed to be generally much better than those found using the sequential approximations algorithm.

6 Conclusions

In this work, the integrated control/structure design optimization problem has been investigated from a re-
sponse to disturbances point of view. Both full state and output feedback controllers were employed in the

control strategy, and two solution methods were compared. It was found that for this problem, the continuation

method coupled with a sequential linear programming approach performed better than the more traditional

type of nonlinear approximations approach, in the sense that it was more robust to changes in the arbitrary

parameters set by the user, obtained better results, and the results were easier to obtain. The design space was
found to exhibit multiple local minima in which the solution could become trapped, although the continuation

solution method seemed to handle the corrugated design space better than the other method. In future work,

more diverse controller types must be considered, along with structures consisting of more complicated finite
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elementsthan simple truss members. Additionally, more realistic problems of higher dimension must be solved,
to demonstrate the practicality of this design procedure.
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Scaled DV

Final DV

1

2

3

4

5

6

7

8

9

10

11

12

iter. for

convergence

-- --_w_i0-s) I
1 l 2 '1"--_-T 4 I 5 i

90.437 63.947

125893 73,091

23.336 53.545

45.632 15.268

6.389 1O.7Ol

10.973 5.375

9.800 6.209

17.627 8.610

17.719 0.12"1

0.100 13.250

0.100 9.:t32

18.206 0.100

0.100 O.lO0

1.6710 [.4574

1.0 1.0

44 19

52.212 45.213 40.441

70.557 i49.717 43.868

36.664 21.137 23.151

14.833 35.217 21.510

5.599 6.318 4.957

12.207 4.213 9.637

6.953 5.365 4.914

10.775 5.638 9.310

8.802 0.150 9.901

0.I00 0.100 0.100

0.711 0.313 8.30?

13.746 9.473 8.352

0.100 9.266 0.100

1.2620 1.4851 0.8632

1.0 1.0 1.0

15 32 32

6 i 7 8 9 I0

Scaled DV

Final DV

1

2

3

4

5

6

7

8

9

10

11

12

__5___ 10
iter. for 21

convergence

36.918 34.180 31.973 29.979 28.594

25.936 32.194 9.723 16.757 20.331

30.650 21.255 27.425 32.495 .38.508

28.247 20.736 28.618 16.565 11.434

11.168 5.141 4.083 8.798 2.041

10.922 7.713 6.737 4.348 2.369

6.795 4.260 3.815 6.692 2.934

0.101 8.299 0.100 0.I00 0.152

2..501 9.363 0.100 9.628 0.885

0.245 O. lO0 6.482 1.332 3.242

9.107 8.183 8.323 0.100 5.016

7.744 7.379 8.218 7,737 2.532

8.583 0.100 6.782 10.099 0.100

0.7522 0.8544 0.7937 0.9117 1.7622

1.0 1.0 1.O 1.0

18 22 22 49

'Fable 2: Optimal d_ig,I variables for/31 = 50

al Wt. 2451.3 2053.0 2090.6 1915.6 2067.0

al DV

1 73.849 41.076 55.595 38.306 60.319

2 70.699 49.2ll 55.391 68.734 48.760

3 13.262 74.820 58.403 44.107 50A04

4 16.100 2.146 1.6065 1.227 2.841

5 7.730 1.843 1.4806 1.612 2.169

6 8.068 1.819 1.5676 3.161 2.8.34

7 3.864 0.100 0.100 0.100 0.170

8 20.163 0. lO0 0.100 0.451 0.100

9 21.568 0.100 0.100 7.939 8.984

10 5.694 0.100 0.100 0.100 0.100

11 0.160 0.100 0.100 0.100 0.100

12 0.100 0.100 0.100 0.100 9.014

A, 0.9765 3.1055 3.3391 2.6755 2.5236

For MI j # 1, the initial conditions are:

Case 1: p, = p,

Case 2: p, = pj + 3%

Cme3: /h =Pj +6%

Case 4: p, = pj + 10%

Cane 5: Pl = Pj + 50%

For all ca..,,_,(A.)o = l.O, (A,)o = 1.0

'l'ahh, 3: Optimal values when /3_ = 75 and cJ = 1 x 10 -s for differing

initial conditions, when using a moda[ _latc space model
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[ p2

I1o'(_1o-')15o i 00 I To I 80
1 | 2847.1124c_.0I 21c_.6 1969.2I
2 H 2045.9 I 1782.1 I 1579.7 1443.2 |

3 II 1685,6 1 1478.8 [ 1327.5 1197.2 |

l I[ 1470.9 I 1298.0 I 1162.0 1052.0 I

i 5 'r 1325,2 1 1174.2 I 1049.3 952.1 |

167 l,1217.0 I 1083.2 965.9 880.0,

| 1134.1 I 1012.4 901.4 823.8|

1065.7 I 955.3 =849.4 776.5 [

} 1 1014,5 I Z7.9 I 806.4 735.3

0 l[ 613 [ 861.01 770.01 700.2I

I.l,lt. I: OptlmM ',.'.'_i#,t using a modal sf.aLc_space realization and

b,v,-rsc (l_igu varlaMe approximaLions, where the initial condition for

('adl ca._e i._ 1he converged solution from the previous ca_e.

• I initial dv's [ optimal weight iterations

(× l-S) I (structural) | pa = 50 ] _' = 60 .8_ = 50 I'_T'-_60

1 120.0 : 847.9 3548.4 220 300"

2 90.0 _724.3 2490.7 202 300"

3 90.0 _191.7 2083.1 231 300"

4 90.0 ) 95@8 1771.3 188 300"

5 90,0 1680,5 1702.5 300" 181

6 90,0 1529.7 1443.9 300" 300"

7 60.0 I _3.0 1395.0 207 181

8 00.0 1325.6 1247.4 300" 300"

9 60.0 1588.2 1591.6 119 123

__10 [ 60.0 1504.4 1487.0 126 127

• indicates no _onve¢g*nce in specil_e ] mamber r'globM itexatloM

latd_, ¢;: ()Ptulml wright u_hlg scquelvtiM appproxhlmllons _ol.tion

alg.. ilhn, wilh,_ul seal ng for full state feedha_ k, a. Phyri(_J _tate space

u',_li::allou aud invrr.,u" d,'sign variMde al>llroximali(ms.

-----_'_---] initial dv's [optimal weight- 1

(×IO-S) I (structural I [_50 [ _ = 60 1

, 1 00 l TM 13013.71
2 00,o i TM I 211_.4II
3 00-° 118"91 1737.2_
.t _.0 11617'_i 1630.3H
5 O.O I 1450.0 I 1447.6 l]

6 0.0 ' 1321.6 I 1221.0 II

7 00 1226.81 1135.0 n

8 D.O 1143.9 I 1064.0 II
9 O.O 1085.4[ 1002.9

tl

i 10 _,0 1024.3 ] 961.8j

I.hlo 7: Ol_timal weight usiitg ('o*flinuallon solullon MgorilhiH wilhout

_ ating for full stnle foodhark, anti a phy_icM state-space reMizalion.

or3 in itial dv's /_

(×lO-S) l(structural) 50 ] 60 I

1 120.0 47649[ _o_q
2 90.0 3553.6 i170.5 1

3 90.9 2744.5 [ !58@7 1
4 90.0 2511.8 :388.8 I

5 9 t.0 2090.7 004.6 |

6 9ql.0 1954.7 830.1 |

7 &l.O I 1797.0 698.4 I

8 6,,0 ] 1683.6 585.0 |

9 6qL0 [ 1584.3 496.5 II

10 _,.0 11503.4[ 420.1 I

lahh. 9' (IpllmM wrighl using ronlitumtiou solutinn algorithm For <1i-

I,', I ,.,tpu{ feodha, k ",'.'ilh II = (_,T. alibi a r,hyrl,'al stale sl_.a_., ..'.aliz_

_--#%_1,_ I,.
[ 1 I : I [ 4 I _--

Av
iter. for

con v_rgeQce

Final DV

1 125.893 82.406 66.777 57.864 50.877

2 23.336 19.075 16.011 14.170 13.257

3 45_632 36.194 29.987 26.286 23.752

4 6.389 6.372 5.386 4.736 4.105

5 I0.97; 8.135 6.487 5.952 5.429

6 9.800 8.558 7.433 6.631 6.031

7 17.627 12.148 12.085 9.342 11.208

8 17.719 10.689 8.446 6.718 5.422

9 0.100 0.100 0.100 0.100 0.100

10 0.100 0.100 O.100 0.100 0.100

11 18.206 11.326 8.820 8.172 7.76q
12 0.100 0.100 0.100 0.t00 0.100

1.6710 1.6281 1.6293 1.6325 1.6273

1.0 1.0 1.0 1.0 1.0

44 16 2 2 2

Final DV

I

2

3

4

5

6

?

8

9

10

11

12

_u

iter. for

convergence

a_(xl0-S)
6 t I 8 9 I 10

|
46.745 I 42.8_0 ] 40.259 ] 37.112 33.742 [

12.302 [ 11.810 [ 11.108 [ 11.403 11.179

21.926 I 20.4_8 [ 19.239 I 18.610 17.761 I!

3.996 I 3.6:1 I 3.446 I 4.045 3.745 It
•5.144 I 4.718 ] 4.451 I 3.751 4.167 II.

6.556 ] 5.2_ l I 4.926 I 4.681 .I.634 II

7.501 I 9.3:0 [ 8.344 I 7.053 6.621 fl

5.286 ] 4.3_,0 [ 4.167 I 5.319 5.070

0.100 I 0.1(0 I 0.100 I 0.100 0.100 II

0.100 I O. lfO I 0.100 I 0.100 0.100 fl

7.2217 ] 6.6(3 I 6.216 I 4.678 5.357 |

0.100 I 0.1(9 I 0.100 I 0.100 0.100 u

_-1_6-]_,_-Fi._l_-T@-_)._-0-- ].-_g,10_--_I
__1.0___/ .1.1_ 10 ....

' L2Z 4 .....

rahle 5: ('lpthnal design v.xliabb.r |or d 2 : 50 cases Ftiven in ['.Ida, 1

cr _ initial dv's [ optimal weight itcration_ _

1 129.0 I .18;'10.5 4616.8 400" 400"

2 90.0 _ 3626.9 3262.8 223 I 400"

3 900 2903.5 2668.4 400" i 400"

4 90.0 i 2393 5 2324.4 400" [ riot)"

5 90.0 2152.3 2054.5 290 I 400"

6 90.0 2067.1 1893.6 312 21;5

7 60.0 1811.6 1615.2 336 254

8 60.0 1704.1 1639.7 400" [ 40O"

9 60.0 ......

10 60.0 t629.4 14R7.0 425 t 500 °

'table S: Optinlal _(,g t u',iug S.,lUV_dlM aplq_r_xbnalions .,dulh),_

,lgmilh,i for direr_ OUfl>,fl [,'e(tha{k v. ilh II : (;t a_,,t a Id_v:-i,a]
stair: _pace IcaJlzatiol}.
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l'i_.,iu 6: Ol,litnM w<>i_,l)t ft. var)irl<_ extrlnal dist,irbanee infensity

\. = .,',,,I wilh c_i = I × 10 + and /7_ :: 50

[--] t 1 ,-T--3-T -v--t -_--'
Initial DV 120.000 190.000 90.00t/ 90.000 90.000

Final DV

1 92.172 55.944 41.010 44.107 36632

2 72.274 55.967 52.340 40.128 32.776

3 71.334 62.487 41.938 38.878 31.848

4 41.867 2q.830 24.475 24.192 17.445

5 47.282 33.755 24.327 19.986 18.412

6 41.794 33.553 26.973 23.608 20.363

7 41.341 2365 5.462 17.750 8.363

8 41.314 _'20.562 1.604 17.277 1.317

9 2.795 20.742 23.982 1.761 10.880

10 9.518 2.424 24.159 12.659 17.091

11 9.5tl 24020 1.570 14.006 20.089

12 2.795 23.903 5.612 1.667 1.458

_' (xl0-')
6 71819 10

90.000 60.000 60.000 60.000 60.000

28.739 34.922 25.632

39.315 26.729 32.700

28.871 26916 24.976

17.154 16238 1,1.880

17.249 17.279 15.037

19.143 16.109 16.386

4,076 15.734 3447

1.143 15.739 0.996

16.803 1.039 14.683

16.869 3.667 14.621

1.200 3.627 1.013

3.803 1.038 3._$7

50

Initial DV

Final DV

1 30.032 23.272

2 23.857 28.426

3 24.192 ;22+333

4 14.139 13.401

5 15.367 13.472

6 14.174 14.662

7 14.073 3.130

8 13+904 0.850

9 0.896 13.294

10 3.215 13.149

11 3.291 0.849

12 0.899 3.069

TaiHe 10: Optimal d,'sign variabl-s _r fli = ,a_es fionl'[ahh 9

c__ initial dv's ] optimal weight I iterationsJ__xi0-+) I (,truct,t,ai) /7_--_O[ "_T-U'=_[-3,-S_-_-__ #_ =-------_

.... _ 120.0 .3889.6
90.0 2620.3

90.0 2161.2

90.0 1917.1
90.0 1747.7

i

6 [ 90.0 1603.t

7 I 60.0 1680.4

8 60.0 1383.7

i
3630.7 t 221 247

243,1.5 ] 400" 400"
1

1975.4 I 400" 400"

1732.4 ] 277 400"

1544.5 _ 208 400"

1541.1 199 189

1365.0 160 281

1234.0 187 400"

11569 400" 400"

400"

5o 60 1
120.0 3516.5 3232.6

90.0 2402.4 2213.0

90.0 1935.5 1790.2

90.0

90.0

90.0

60.0

60.0

60.0

60.0

I
9 ] 60.0 1252.3

10 ] 60.0 1206.3 1112.2 II 311
-- " indic&tes no convergence in _peei_, d nunCoet n¢ global ite['ations

Table 11: Optinlal woight using Sr,l,l<'ntlM appl>mximalions r,)hil.i,in

algorithm with a physical slate-_l)aCe realizalion, [or direct oulpul f_,d

back with It = G T, plus node 1 displarenlcnls an,t vehwitirs

o I initial dv's /_i-----

(×10 -s) (structural)

;1 1671.5 1,543.3

1492.9 1379.2

364.6 1261.6

1459.5 I166,3

8 ] 1184.0 1093.4
i

9 i 1116.8 1186.1

I0 1063.4 983.3

rl'al_le 1'2: Opliulal weighl using conlhiliallon mhlliol, algorithiu wilh

,'l physlc:d sl, atc-spae,, realiTatioll, [ol diiecl (Jill;Hit fcedhack with II :

(7# I.lus node I dislllaconicnls aild v.!i,, itics
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Abstract

A direct algorithm is suggested for the computation of a linear output feedback for a multi

input, multi output system such that the resultant closed-loop matrix has eigenvalues that include

a specified set of eigenvalues. The algorithm uses deflation based on unitary similarity transfor-

mations. Thus we hope the algorithm is numerically stable, however, this has not been proven as

yet.

1 Introduction

Deflation is a technique that has been efficiently used in the solution of the standard eigenvalue

problem of a matrix A as well as other eigenvalue related problems. According to this technique once

an eigenpalr (_1,xl) of A is computed, we continue the process with a matrix that possesses only

the remaining eigenvalues of A, and possibly a zero eigenvalue in the place of )_1. In this way we are

left to solve a smaller problem. Deflation can be accomplished by a variety of algorithms. Some of

them are, Hoteling's deflation, Wielandt's deflation, deflation based on similarity transformations,

deflation by restriction, etc. An excellent review of the first three methods can be found in [7, pp.

584-600], whereas deflation by restriction can be found in [5, p. 84]. Lately, deflation has been

used in the solution of eigenassignment problems. For example, Wielandt's deflation is used in [6]

to solve the partial eigenvalue allocation problem with state feedback for continuous time systems.

In this paper we will be concerned with deflation based on unitary similarity transformations, and

how it can be used in the pole assignment problem with output feedback, or as it is often known,

the eigenvalue allocation problem with output feedback (MEVAO).

In section 2 we define the MEVAO. In section 3 we define transmission zeros and discuss how

they affect the MEVAO. In section 4 we give an algorithm for the solution of the MEVAO. Finally

in section 5 give some numerical examples to demonstrate the performance of our algorithm.
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Lower case Greek letters represent scalars, upper case Roman represent matrices, while lower

case Roman represent column vectors and indices. Superscripts T, H indicate transpose and con-

jugate transpose respectively. The notation k = i(r)j means that k takes all the values starting

from i until j with step r. ei represents the ith column of the identity matrix I, and A(.) the set of

eigenvalues of a matrix, counting multiplicities. R(.), N(.) will represent the space spanned by the

columns of a matrix, and the null space of a matrix respectively. _, C will represent the set of real

and complex numbers respectively.

2 The Problem

The MEVAO problem that we will attack in this paper may be defined as follows:

We are given a controllable and observable system

_(t) = Ax(t) + Bu(t)

y(t) = c (t)

(1)

(2)

where A E 1_nxn, B E _,,x,,,, C E IF/_'xn, rank (B)=m, rank(C)=p, x(t) e _" is the state

of the system at time t and u(t) the input at time t. We are also given a self conjugate set

of eigenvalues $_, i = l(1)r with r=min{n,m+p-1}, we need to compute K E IW_'X_' such that

)_(A - BKC) D_ {)_i I i = l(1)r}. As a result, a linear output feedback u(t) = -Ky(t) may be

computed that will make (1) become

_(t) = (A- BKC):r(t).

The resulting system will have desirable properties for tile contror engineer.

3 Transmission Zeros

In the remaining of the paper unless otherwise stated, we will assume without loss of generality

that m <_ p.

Transmission zeros (trzs) play an important role in the MEVAO, thus it is vital that they are

well understood. Our experience with the literature on trzs has been rather disappointing. In our

search for a definition we have found several; some of them even contracting one another. Thus we

141



decidedto resortto the physicalmotivationof trzs, and from that to derive a sensible definition.

Some observations that may give some physical motivation to the concept of a transmission zero

(of a controllable-observable system in our case) were found in [2], p.41. From this we concluded

that, physically, a transmission zero (trz) of a system is a specific frequency of the system for which

there exists a nonzero input that will yield a zero output. This basically is definition 1 below. In

the following we will present three definitions of trzs, and we will prove their equivalence. The

reason we present these three defintions is because the first is directly derived from the physical

motivation of trzs, the second is very useful in matrix computations, and the third is frequently

encountered in the literature.

Definition 1: A number ( e C is a trz of (1),(2) if and only if there exists nonzero input u that

can yield a zero output y = G(_)u = 0, where

G(s)= C(sI- A)-1B ,with s E C

is the transfer function of (1),(2). []

The number of trzs of (1),(2) can be at most n- max{re, p} (see for example [2], p.65). The set of

all trz8 of (1),(2) will be denoted by Zt_. Often it is helpful to use the following definition of a trz.

Definition 2: (" e C is a trz of (1),(2) if and only if

3u ¢ O : =0 with
C 0 u

x = (_I- A)-IBu .

[]

Frequently we encounter in the literature the following definition of trzs.

¢i(¢)

°.o

Definition 3: Let L-'(()G(()R-I(_) - _m-1(0

0

be the Smith-McMillan (S-M) form of G(¢'), where L(_), R(() are polynomial matrices and we have

assumed that G(s) has normal rank m. Then _ is a trz of (1) if and only if there exists i = 1,..., m

such that el(() = 0.

In the S-M form of G(() the following properties hold

[:]
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and

Because of the above properties we see that there cannot be trz _ that will also be a root of Cm((_).

Since, if it were then _m(_) = 0 and _ would have been cancelled in _m(_) I Cm(_). Hence _"would

not be a trz, which is a contradiction. The roots of ¢i(_), i = l(1)rn are the poles of (1),(2),

counting multiplicities. In our attempt to prove the equivalence of the above definitions we will

be using the expression G(_)u with _ E Ztr. One then may wonder about the existance of G(_)u

when _ is also a pole of (1),(2). The following lemma will help us clarify this point.

Lemma 1: Let _" E C be a trz as well as a pole of (1),(2), then there exists u ik 0 such that

lira G(s)u exists.
s---*(

Proof: Let _ be a pole as well as a trz of (1), then from the S-M form of G(_) we have that

3(i,j) with i < j : ggi(_)=ej(()=O.

Let us now for illustration assume p = m = 3 and ¢1(() = e2(() = 0. Then by taking fiT =

(0, 77,6) # 0 we have the following from the S-M form of G(s).

lim L -1 (8)G(s)R -1 (.s)_
s--._ (lim /(s--*__10) 0

= |;_ e2(s)

um _--4z)- 0

/° )= 0

Olim _sO
s---,i¢3O)

which is defined since ¢3(_) _ 0. Since L(s), R(s) are nonsingular (they have determinants inde-

pendent of s, see for example [7], p.21), lim L-l(s), lim R-l(s) are defined.

Hence if we take u = limR-l(s)fi then limG(s)u is defined for every _ E Ztr that is also a pole of

(1),(2). 0
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In the following when we write G(()u with ( E Ztr also being a pole of (1), we will mean

liraG(s)u.,_.,_ Similarly when we write x = (_I- A)-IBu we will mean z = _imc(sI- A)-IBu, when

E Ztr is also a pole of (1),(2).

Theorem 1: Definitions 1,2 and 3 axe equivalent.

Proof: To prove that definition 1 is equivalent to definition 2 we proceed as follows:

(EZtr {3u_O : C((I-A)-1Bu=O}

¢==} {3 u _ O : Cx = O with

I( A-'I_
¢=_ , 3u¢0 :

C 0

x = (_I- A)-IBu}

}=0 with x = (_I- A)-IBu
U

To prove the equivalence of definitions 1 and 3 we proceed as follows:

Cez,, _ {3u#0 : G(;)u=0}

3u#o
diag

: L(O _=_c_)., R(_)u = o
0

M(O

(3)

Since L(s), R(s) axe nonsingular for Vs E C, M(() must not have full column rank in (2). Hence

(3) ,=, {3i _ {1,2,...,m} : _(¢)= o}

[]

In the last theorem we silently assumed that the normal rank q of G(s) is m, or equivalently

A-sI B
the normal rank n + q of P(s) = is n + m. However, theorem 1 holds even for

C 0

the degenerate case where q < rain{re,p} (= m according to our assumption). To show this we

proceed as follows:
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First weproveZt, = I2 using definition 1. Since q < m the following is true

{v( e c 3u # 0 : a(¢), = 0) a¢_ z,, = c. (4)

To prove the equivalence of definitions 1 and 2 we see

{ (A,, ,}Zt_=12 (¢_ V_'e12 3u¢0 : =0 with z=((I-A)-IBu ,
C 0 u

To prove the equivalence of definitions 1 and 3 we see

z,,=c c¢_ v(cc_#0 : L(0 _=1C R(()_=0
0

¢==_ {V(•C 3i• {1,...,m} : G(()=0}.

Hence another definition of trzs that is often found in literature, and according to which ( • Ztr

if and only if G(() and P(() go below their normal rank, does not agree in the degenerate case

with definitions 1, 2 and 3. This is so because not V( • 12 will make G(() and P(() go below their

normal rank, hence Zt_ _ C , according to this definition. In what follows we will assume that

trzs are defined by definitions 1, 2 or 3.

Definition 4: A number ( • 12 is a strong transmission zero (strz) of (1),(2) if and only if

G(_) = 0, or equivalently el(_) = 0 (in the S- M form of G(_)), or equivalently

{ )Vu#O, =0 , with x=((I-A)-IBu •
C 0 u

El

Theorem 2: _ • 12 cannot be assigned by output feedback if and only if _ is a strong transmission

zero.

Proof: Let G(() _ 0, thenif(• ,X(A) we take K = 0 and (is placed. If(¢,_(A) then there

exists u _ 0 such that

y = G(¢)_ # o
x = ((I- A)-IBu }

=_
y=Cz#O
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u TIf we take K = - -_ then we see that
y-y

[(I-(A- BKC)]z = (_I- A)x + BKCx

uy T

Bu-B-_y =0

Thus the eigenpair (_, x) has been placed, which proves the necessity of the propositionn given by

the theorem. To prove its sufficiency assume G(() = 0, but nevertheless ¢"has been placed. Then

there exists x _ 0 such that for some K

(A - _I)x - BKCx = 0

Hence from (A - (I)x - BKCx = 0 ::V

if ( e A(A) the G(() is not defined, however it is assumed that G(_') = 0.

x - (A- (I)-:BKCx = 0

=_ Cx - C(A- (I)-IBKCx = 0

Cz + G(()KCx = 0

==_ C x = O .

(A - (I)x = 0 =_ ( E A(A). This is a contradiction, since

[]

4 The Algorithm

We give an algorithm based on deflation by unitary similarity transformations.

Step 1: Compute a feasible eigenvector xl of A1 - BIKIC: = A - BKC corresponding to, say

A1 with II xl I1_= 1. We will show in the sequel how we may compute such an xl.

Step 2: Allocate the eigenpair ()q,xt) to A1 - B1K1C1 as follows: Let V1 be a unitary transfor-

m,io..hth. = = a QR decomposition of B1, then
0

(A1 - BIK1C1)xl = A1xl ¢:::v. Alzl - BI(KxV1)(V_Clxx) = )qzx

Blf(1$xel = (Ax -,_xl)xl , with [Q = K1V1

¢:::v. Blkl_1 = (A1 - AxI):rt , with kl = klel

(,1)¢==V k151 =

0 UH(A1 AII)xl
(s)
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From(5)weseethat if xl was computed in step 1 so that xt E N[UT(A1-)hi)I, and k, is computed

by solving

Rlkl = _IUoZ(A1 - _I)zl (6)

then (5) is satisfied and the eigenpair ($1, Xl) is allocated. An eigenvector x_ that satisfies

x, E N[UT(A1 - _lI)] will be called feasible.

Step 3: Compute unitary Q1 = (X1,(01). Hence from Qlel = ,T,I_ QHxI = el we see that QI can

be a Householder transformation or a sequence of rotations.

Step 4: Perform the unitary similarity transformation

From step 3, kl has been computed so that Alxl - Bikini1 = Al_rl. If we now set _'1 = (kl,K2)

and

 c101(Cl )thenc2
(7) =

---- ( )_1 *

A2 - B2K2C2

[)qxl , A1Q1- BI(klcH1 4- K2C2)]

I xlH[AIO, 1-BI(klcH"FK2C2)] )

whereA2=Q, HAl_),-_)HB, k,4 , B2=QHB2.

Step 5: Continue the allocations with A2 - B2K2C2. El

There are two points that need to be clarified for the allocation of _1 in the above algorithm. One

is, how to identify whether _1 is a strz or not, and the other is the computation of Xl.
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Lemma 2: If {A1 is a strz of (1) } =_ 61 = 0.

Proof: Let Hi be a strzof (1)then

{ (A, }VB 1 _ 0 3X 1 " = 0 ::_ ClX 1 = 0 =:_ 61 = 0 .

C1 0 ul

We may note however that the above lemma on its own is not adequate to identify strz. In the

sequel we will compute our feasible eigenvector zl in such a way that if 61 = 0 then A1 will be a

strz. As we will show, computing Xl in this way will also improve the numerical stability of our

algorithm. To accomplish the above we proceed as follows:

We know that

[611=11C, z, 112_ {6,=0 ¢=_ x, eN(C,)} .

Thus if we compute xl so that

when

z, E N[U_(A, - H,l)]- N(C,)

N[UIH(A,- H,/)]- N(C,) _ {}

then we may safelyconclude that 61= 0 =_ {Hi isa strz}. Ifthe dimension of

N[UIH(A, - H,l)]- N(C,)

is greater tha_ one, we have some freedom in choosing our xl. To see how we may exploit this

freedom, we observe from (6) that if[ 61 [ is unreasonably small then we may unnecessarily lose

accuracy when we solve (6). To avoid this, let

cT=(H°'HI)( Z1)0

be a QR decomposition of C T, then R(H0) = R(C T) and R(H1) = N(C1). Assuming now

I[ Z l [[2:1 we get

16, I=11c,_,112=11ZrHro_ffill2-<11Z, 1121[HTox, 112.

But IIHoTx, 112= ama_(HTx,) = co80, am_() is the maximum singular valueof a matrix, and

0 is the smallest angle between R(C T) and R(xl) (see[I]). Hence from
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I 11z 115cos0

in order to make [ _fl [ as large as possible we need to make # as small as possible. Thus we will

choose xl E N[UH(A1 - All)] that forms an angle 6 with R(H0) as close to zero as possible. The

following theorem taken from [1,p.582] and modified to meet our requirements, will give us a way

to compute 0 as it was required above.

Theorem 3: Let H0 and W1 form unitary bases of two subspaces. Let also

HoHW, = yEX H

be the singular value decomposition of HHw1, then the smallest angle between R(H0 and R(W1)

takes place between vectors HoYel and W1Xel .

Proof: See [1]

Theorem 3 suggests the following algorithm for the computation of Xl:

C°mputetheQRdec°mp°siti°n°fCT'Bl'and[Ultf(A1-)qi)]H= (W°'W1)( T)0

Compute the singular value decomposition of VoltW1 = Y_X H.

Take ;Z 1 ----- W1Xe I .

Finally to eliminate any doubt that _fl = 0 when )_1 is a strz we prove the following lemma.

iemma 3:N[UH(A1 - AII)] C_N(C1) ¢=v {,_1 is a 8trz of (1),(2)}

Proof: First we prove

N[UH(AI-AII)] = {(AtI-A1)-IBlUlIUlEJRm}.

To do so, we see that, given ul # 0 and computing Xl to satisfy

Thus

(A1 - _1I)zl = -BlUl
¢=v U_ 0

:v xl E N[U_(A1- )qI)].

{Vul E JRm , (_,I- A1)-1Blu, E N[U1H(A1 - )qI)]) =:_

I/1

(8)
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{(A,I-A1)-'B, ullu, E_m} C N[uH(A1-AII)].

Let xl : UH(A1 - _l/)Xl -- 0, then, since we can always compute

u E 1_ '_ : Rlul = Uon(A1 - AlI)zl ,

from which we get

ul _ Zl - ()ql- A1)-lBlUl ,

N[UH(A1 -AII)] C {(A,I- A1)-'Blul l ul _: It"*}.

From (9), (10) we may derive (8).

Suppose now that

(9)

(lo)

{_1 is a _trz ol (1), (2)} {Vul E /_m CI(All- A1)-IBlUl = 0}

C1N[UH(AI - AII)] = 0

_==> N[UH(A1 - _1I)] C N(C,).

[3

The algorithm that has been described so far in this section, can be used to allocate only one

eigenvalue. We will show however that we may use it to allocate min(n, m 3-p- 1} eigenvalues. To

do so we need to observe that only the first column of the current Ki is needed for the allocation

of one eigenvalue. We also need to consider the fact that )_(Ai- BiKiCi) = ,_(A T -CTKTB'T,).

Given these two points then we may use the following algorithm, which for illustration we describe

form=2andp=3, thus

(xxx)xxx
We allocate eigenvalues until the number of rows of the current Ki become greater than the number

of columns. In our example this happens after the allocation of two eigenvalues, hence
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At this point we continue working with the transposed system A T - f, TTt'TI:tT'-'3 "'3 _'3 " Since K3r has

two columns we are able to allocate two more eigenvalues instead of just one that we would have

allocated if we had continued with/(3. In the general case we keep transposing until we run out

of eigenvalues or columns. Thus the total number of eigenvalues that we manage to allocate using

this algorithm is

re+p-l=4 .

Note that by following this algorithm we also satisfy the condition m _( p at the beginning of each

allocation. This condition has been assumed throughout this paper. Note that m,p are associated

with the columns of the matrix on the left of Ki or K T and the rows of the matrix on the right of

Ki or K T respectively, rather than with Bi and Ci.

5 Numerical Examples

In this section we give two numerical examples to demonstrate the performance of our algorithm.

The computation was performed on double precision (56-hit mantissa) using PC-MATLAB on a

Toshiba T5100 which uses an 80387 coprocessor equipped with the IEEE floating point standard

of arithmetic. In the computation below we show, up to 12 decimal digits of accuracy.

Example 1:

A

0.581314086914

0.166717529296

0.353500366210

0.836242675781

0.244094848632

0.504058837890

0.157394409179

0.441650390625

0.200820922851

0.936126708984

0.559921264648

0.665222167968

0.373367309570

0.072296142578

0.607955932617

0.741333007812

0.933609008789

0.771942138671

0.598373413085

0.154357910156

0.303421020507

0.144439697265

0.078048706054

0.638671875000

0.154678344726

B T --

0.549163818359

0.942672729492

0.613098144531

0.843856811523

0.008666992187

0.065872192382

0.178649902343

0.239028930664

0.300445556640

0.409255981445

0.142791748046

0.576828002929
0.595489501953 1

0.671371459960

0.726318359375
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C

0.561660766601

0.427825927734

0.455917358398

0.332702636718

0.648269653320

0.134307861328

The eigenvalues to be allocated are

0.355514526367

0.666625976562

0.497573852539

0.279266357421

0.572494506835

0.212463378906
0.531448364257 ]

0.972076416015

0.653732299804

{0.704589843750, 0.421768188476, 0.572113037109, 0.396102905273, 0.127380371093}.

The K computed by our algorithm was found to be

g

-9.415631257941

-36.155174309311

33.590525809043

-1.520241736469

-4.515055559417

4.071903303950
11.520696978251 ]

41.184483490595

-36.923138190434

The eigenvalues of A - BKC were computed and they were A(A - BKC) = {0.704589843749,

0.421768188479, 0.572113037109, 0.396102905270, 0.127380371093}.

Example 2: In the above example we had n = re+p- 1, thus all n eigenvalues were allocated.

However, if m + p - 1 < n then n - (m + p - 1) eigenvalues of A - BKC will take values that our

algorithm has absolutely no control over. The following example demonstrates this point.

A

0.356336616284

-0.210549376245

-0.355939324751

-0.356626507847

2.165165719183

-0.506195941988
-1.198870998736 )

-0.882324378697

0.721098719251

n __

1.606955436561

0.062823512419

-1.611627967397
-0.407338058168 ]

-0.595038063525

0.616657720777

C=(-1.182820557312 0.343687857622 -0.357421120340)

The eigenvalues to be allocated are {-0.406648486670, -0.366406484747, 0.853280016421}.
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The K computed by our algorithm was found to be

g

-2.053475126112)-6.466096811958

The eigenvalues of A - BKC were computed and they were A(A - BKC) = {-0.406648486670,

-0.366406484747, 1.707616832510}.

Our algorithm allocates one eigevalue at a time, thus complex eigenvalues need complex arith-

metic. As a result, K may be complex. Investigation is under way to derive an algorithm that

will allocate two eigenvalues at a time in a double step. In this way we will allocate a complex

conjugate pair of eigenvalues in one double step using only real arithmetic. Hence K will be real.

6 Conclusion

We presented an algorithm for the pole assignment problem for multi-input, multi-output systems

using output feedback. The algorithm uses deflation based on unitary similarity transformations

and it allocates rain{n, m + p - 1} eigenvalues. The same kind of deflation has been used in [3] to

solve the corresponding pole assignment problem using state feedback. Since the algorithm in [3]

has been proven to be numerically stable we hope the algorithm in this paper has the same property

too. However, this needs to be proven by doing a rounding error analysis of the algorithm, and we

plan to do this in the near future.
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i. INTRODUCTION

The strong interaction between structural dynamics and active control is a

well-recognized challenge in the analysis of controlled flexible structures.

But it is only recently that the same interaction has been exploited in the

design process. The traditional design approach in which the control design

comes very late in the development -- typically after the structure has been

designed and built .- is no longer viable. Although this approach has produced

satisfactory results for the attitude control of relatively rigid space

structures, it will not be suitable for the ambitious space missions that

require precise controlled pointing of telescopes, interferometers and the

vibration suppression for science instruments mounted on large flexible

structures. In such systems, designing the structure and designing its control

become entwined. This dictates early consideration of the control design --

well before any detailed structural design is finalized. And just as the

structure is optimally designed to meet such performance metrics as minimum

mass or response to external disturbances, it should be optimally designed to

meet its ultimate control performance as well.

A natural way to introduce the control element into the overall design

process is through an optimization procedure that combines the structural and

control design criteria into a single problem formulation. A number of authors

[1-6] have taken this perspective. In terms of the types of design parameters

and constraints considered, Ref. (2) is probably the most extensive in that the

design variables include structure parameters, actuator locations and feedback

matrix. Static output feedback is used, and the performance objectives include

total mass and robustness measures. Constraints are imposed on the eigenvalue

placements, performance bounds, and structural constraints. Since not all of

the constraints are commensurate, they are relaxed using a homotopy approach.

Just as with Ref. (6), the approach taken in the present paper is not to

produce the "best" optimized point design, but to produce a family of Pareto

optimal designs representing options that assist in early trade studies. The

philosophy is that these are candidate designs to be passed on for further

consideration, and their function is more to guide the system design rather

than to represent the ultimate design.

An optimization approach that is consistent with this philosophy is to

utilize multiple cost objectives that include an LQG cost criterion in

conjunction with structural cost(s), and possibly other control related costs.
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After introducing the combined objective formulation in the setting of vector
optimization, we derive the necessary conditions for Pareto optimality. No
behavioral constraints are explicitly imposed in the problem formulation and a
homotopy approach is used to generate a family of optimum designs. The intent
of this paper is to explore this design approach and to provide an exposition
of the computational aspects of the problem using numerical examples.

2. COMBINED OPTIMIZATION

The combined optimization approach can be best appreciated when contrasted

with the traditional sequential optimization. In the sequential optimization,

the structure is first optimized by selecting the design variable, _ (e.g.

member sizes) which minimize a structural criterion Js(_) often taken as the

mass of the structure subject to some behavioral constraints h(_)_0 on

deformations, stresses, open-loop frequencies, etc.

min J (a) ; h(a)_0, a_D (2.1)
S

where D is the physical domain for a. Second, having completely specified the

optimal structural design a*, the control optimization is carried out with _*

fixed. For example, LQG or H_ optimal control designs pose the problem:

min J (_*,C) (2.2)
C

C

where Jc represents either of the control criterion, and C is allowed to vary

over the class of stabilizing compensators for the plant.

By contrast, in the combined optimization formulation, the goal is to first

merge the criteria of interest (here Js and Jc) into one using non-negative

multipliers 8, and 6, then optimize the combined criterion over the original

design variable space a, C:

min [_Js(=) + 6Jc(=,C] (2.3)
_,C

The following expression compares the results of the two optimization

procedures outlined above.

mln [_Js(a) + 6Jc(a,C)]<[min__ _Js(a) + mln 6Jc(_*,C)]
_,C _ C

(2.4)

The rlght-hand side of (2.4) corresponds to performing the sequential

optimization by solving (2.1) for a*, followed by solving (2.2) for C*. Note

that the optimal solution of the rlght-hand side is independent of _ and 6-

but not so for the combined optimization embodied by the left-hand side. In

terms of the total cost, expression (2.4) states the fact that the combined

optimization is never inferior to the sequential optimization. In the vector

optimization setting, the relative weighting of _ and 6 serves as a parameter

that allows the generation of an entire family of Pareto optima.

In the present paper, only two objective criteria are dealt with. But it

is not difficult to generalize the approach to incorporate other criteria such
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as minimumopen-loop frequency and certain controller robustness measures. In
general these criteria are noncommensurate,and there is no unique solution

that minimizes all criteria Jl ..... JN simultaneously. Thus, one must look for

Pareto optimal solutions as outlined below.

First one assembles the criteria Ji:D_R, i-I ..... N into a single criterion

J:D_R N, J(_)=(Jl(_),...,JN(o)) T. Then the cone C O = {x_RN:xi_0, i-i ..... N} is

defined to induce a partial ordering _ on R N by x<_y if y-x _C o. Now let a_D.

A design vector _*_D is said to be (strongly) Pareto optimal if J(_) _ J(_*)

implies J(_)=J(_*). A necessary condition for Pareto optimality is contained

in the following theorem due to Lin [7].

Theorem 2.1: If _* is Pareto optimal for the combined criterion J, and D is an

open set, then there exists a nonzero vector Z_C o such that zTJ,(_*)-0. Here

J, denotes the differential of J.

For the two-term optimization problem in (2.3), we find that the Pareto

optimal solution to J = (Js, Jc) T can be generated by solving for the necessary

conditions for extremizing the following convex combination JA"

JA - (l-A) J (_) + AJ (_ C)"S C ' '
Ae[O,l] (2.5)

where A replaces 8, 6 in (2.3). The form ol! Eq. (2.5) suggests a homotopy (or

continuation) approach for generating a family of Pareto optima as A is

propagated from 0 to i.

3. NECESSARY CONDITIONS

We begin with the n s degree-of-freedom dynamical system

M(_)_ + D(_)r + K(a)r - Glu + G2v (3.1)

where M, D, and K are the nsxn s mass, damping and stiffness, G I is the constant

nsxn u control influence matrix, and G 2 is the constant nsxn d disturbance

matrix. The vectors r, u, and v are respectivel_, physical degrees-of-freedom,
control forces and disturbances. Let x - (r,r) L. Then the first order state

equation is

x - A(a)x + Bl(_)u + B2(a) v + v' (3.2)

where

[0 [0] [:]- , B 2 - _IG 2 (3.2a)A - M_IK _M_ID , B I M_IG I

and an additional disturbance v" independent of _ has been introduced for

greater flexibility of the formulation. We assume that (3.2) has measured

output variables y and controlled output variables z:

y - Clx + w,

z - C2x

(3.3)
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and that u, u', and w are uncorrelated white noise processes with intensities

Qu, V, and Qw, respectively.

In the remainder of this paper, the total mass of the structure is assumed

to represent the structural criterion Js- Thus, for a structure consisting of

n a one-dlmensional finite elements, each having a cross-sectional area _i,

length _i and density p:

n

a

J - [ (3.4)s P_i_i
i

For the control criterion Jc associated with (3.2) and (3.3), we assume the LQG

index

J - lim E{zT(t)Dz(t) + xTDI x + uT(t)Ru(t)} (3.5)
C

t-"=

where E is the expectation, D and D 1 are non-negative definite weighting

_atrices, and R is positive definite. Although D 1 is assumed independent of _,

D could possibly depend on _. The latter case would arise, for instance, if

the first term in (3.5) were to represent the total energy in the system with

z - (r,r) T and D - diag(K,M). Under standard assumptions of stabilizability

and detectability, the optimal compensator C* for (3.5) is implemented by [8]:

Uo " -BIPXo

o " (A-KfC)Xo + Kfy + BIU o,

(3.6)

and the optimal cost Jc associated with this compensator is

Jc(C) - tr{P(B2QvB_- zT + V) + pfPBiR-IB_Tx P}. (3.7)

where P and Pf are the unique positive definite solutions to the algebraic

Riccati equations

ATp
+ PA + D - PBIR-I

T

o BI P - 0,

(3.8)

+ +v -0

T 6C 2 + DI and Kf pfcl <iand D O - C 2 , -

With the above representation for Jc, we seek the optimality conditions for

min JA(_)-(I-A)Js(_)+<v,_>+Atr(P(B2QvB_+V)+PfPBIR-IBI P} (3.9)
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n a

subject to the constraints in (3.8). In (3.9) an na-dimensional vector v_R
has been introduced to "regularize" the problem and to serve the purpose of

initializing the homotopy path.

Proposition 3.1 Let Z+ denote the set of nx xn x positive definite matrices.

The optimality conditions for _* to be a local extremum of (3.9) subject

to (3.8) are the zeros of the function H: RxR na x Z+ x Z+ _ Rna x Z+ x Z+

defined by H - [HI, H 2, H 3, H4, H5], where

HI(I,a,ZI,Z2,P,Pf) -

• aDo

(l-A)a-_i +vi+Atr{P a_ i + PPfP a_ i + Zl[a_ i a_ i a_ I

-i T a(B2QuB2 ) a(Cl <icl )a (BIR B I)
"P a_. P] + z2f@-6- Pf + Pf @AT + ' " P }_a_. a_. a_. f a_. Pf] '

i 1 i 1 i

i-i ..... n a (3.10a)

H2(A, _, Zl,Z 2, P, Pf) -

-i T T -i T T -I T -I T

(A-BIR BIP )ZI+Z I(A -PBIR B I)+B2QuB2+PfPBI R BI+BI R BIPP f
(3.10b)

H3(_ , a, Z I, Z 2, P, Pf) -

(3.10c)

H4(A , a, ZI, Z2, P, Pf) - ATp+PA+Do-PBIR-IB_p, (3.10d)

H5(A' Zl' Z2' P, pf) Apf+pfAT+B2QuB_+V_ T -ia, - PfCIQ w CIP f (3.10e)

The proof of proposition (3.1) is omitted here to conserve space, but is given

in detail in Ref. [9]. Thus, for the LQG formulation, the necessary conditions

involve solving two algebraic Riccati equations (3.10d, e), two Lyapunov

equations (3.10b, c), and a gradient equation (3.10a) for _i, i-i ..... n a. In
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the case of the LQR formulation, it is easily verified that the optimization
statement expressed by (3.9) reduces to

min JA(_)=(I-A)Js(_)+<u,_>+Atr{P(B2QvB_+V) } (3.11)

and that the optimality conditions reduce to finding the zeros of the simpler

function H=[HI, H2, H3] involving one Riccati and one Lyapunov equation

(instead of two as in LQG), in addition to the gradient equations:

aJ

H_A,a,Z,P) - (I-A) _ + vi+ Atr{P

T

a (B2QuB 2)

aa i

-IT
aA aDo a(BIR BI)

+Z [2P a-_i+ a_ i p a_i
P]}; i=l .... n (3 12a)

a

H2(A,_,Z,P) - AcZ + ZA Tc + B2QvB_ + V, (3.12b)

H3(A,a,Z,P) = ATp + PA + D O

with A c = A - BIR'IB_p.

" PBIR-IB_p, (3.12c)

4. HOHOTOPY STRATEGY

For all A_[0,1], our goal is to minimize (3.9) in the case of the LQG

formulation or (3.11) in the case of the LQR formulation by finding the design

variables a that satisfy the corresponding optimality conditions (3.10) or

(3.12). The basic strategy is: given the solution at a value Ao, smoothly

propagate it to a new solution at Ao+AA via some local mechanism such as Newton

method or iterative optimization. This strategy has been analyzed in detail in

Ref. (9). In the following, only a summary of the results is given without
proofs, assuming the LQR formulation.

Let x denote a generic point (a, Z, P)_ Rnax _+ x _+ so that H(A, x) stands

for H(A, a, Z, P). In determining the zeros of H, the following proposition

asserts that in a small neighborhood about the optimal at A=0, there is a

smooth path parameterized by A consisting of the global optimal solution.

Proposition 4.1: Suppose that min Js(a) has a unique global solution a*

satisfying the second order sufficiency condition on the positivity of the
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Hessian [Js(_*)],_ _ >0. Further, assume that: Js is coercive so that

ij

]Js(_)[-_ as I_[_. Then there exists _>0 such that (3.11) has a unique global

solution for _<c.

The next proposition provides a sufficient condition for the path to remain

locally optimal.

Proposition 4.2: Let _(_) - (A, x(A)) denote a smooth path in

[0,r)xR na x I+ x I+ with H(_(_)) - 0 and H,x invertible for Ae[0,r). Such an r

is guaranteed by Proposition 4.1. Then a(A) is a local minimum for JA for each

A_[0,r).

The purpose of the following lemma is to demonstrate that the zero set of H

is "generically" well-behaved.

Lemma 4.3: Suppose that H(0,x)-0 has a unique solution. Then for almost every

choice of (v, V, DI)_R na x I+ x I+, the solution path emanating from (0_ x*) is
diffeomorphic to the real R and every other component of H" (o) is

diffeomorphic to either a circle or R.

Thus, following the path defined by one of the zero curves of H, not just

the one emanating from the optimal at A-0, will not lead to a pathological

behavior such as bifurcations or curves with infinite length in bounded sets.

Another fundamental and generally difficult question that arises when employing

homotopy methods is whether or not the path remains bounded. The following

result provides a partial answer to this question.

Proposition 4.4: Suppose that Js, Bi, Do, and A are all polynomials in

_I .... _na, and assume coercivity of Js(=)/]=[. If H(0,x)-0 has a unique

solution, then for any _>0 and for almost every triple (w, V, DI)

eRna x I+ x _, the component of H'I(0) containing (0,x*) is a bounded set in

[0,1-_]xR na x _+ x I+.

5. I_JMI_ICJU., RESULTS

The numerical experiments described in this section demonstrate the results

of the foregoing theory. Two prototype examples are used; both employing the

LQR formulation. Implementation of the homotopy strategy of the previous

section is achieved by iterative optimization, wherein the solution path for

minimizing (3.11) in terms of the homotopy parameter A starts at A-0 with

_i ..... _na initialized to a predetermined sufficiently small allowable size a o.

At this point in the solution space, JA is fully weighted toward minimizing Js

only. Minimization of JAo thus yields _o* for which H(A o, Xo*)-0. For the

next iteration and for every succeeding one, _ is incremented and the weighting

is shifted gradually toward Jc. For a typical iteration j, the following steps

are performed:

(i)

(ii) Initialize the minimization of JA" by using _._a* -i

result in =j* for which condition_ (3.12) hol_. J "

This will
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In performing the minimization in (ii) above, we employed the Automated Design

Synthesis (ADS) system of general purpose subroutines [i0]. ADS provides a

wide selection of options at three levels: strategy, optimization, and line

search. Available strategies include sequential linear and quadratic

programming, and sequential unconstrained minimization coupled with various

penalty methods. At the optimization level, one can choose between Fletcher-

Reeves algorithm and the variable metric method of Broydon-Fletcher-Goldfarb-

Shanno (BFGS) for unconstrained minimization, or Zoutendijk's method of

feasible directions and modifications thereof for constrained minimization.

For one-dlmenslonal llne search, the options include a combination of

polynomial Interpolation/extrapolation, solution bounding, and the method of

Golden Section. Not all combination of options are compatible at the three

levels, and the program parameters must be adjusted to suit the problem at

hand. For this purpose, an analytical function was contrived which possessed

such features as: easy to compute closed form solution, multiple minima, and

insensitivity of the functions gradient near the minima to design parameters.

Several compatible options were tried and the program parameter values (e.g.,

move limits and convergence criteria on the absolute and relative changes in

objective function between two successive iterations) were adjusted until the

closed form and numerical solution agreed within as few iterations as possible.

As a result of these numerical experiments, the popular BFGS variable metric

method for unconstrained minimization emerged as the one of choice for use in

the combined control-structure optimization examples that follow. During the

one dimensional line search, the minimum is located by first computing the

bounds, then using polynomial interpolation.

Example I: The cantilever beam of Fig. i resembling a flexible appendage' of a

large structure is modelled by three finite elements with two degrees-of-

freedom (dof) at each node. The structural design variables are the x-

sectional areas _i, _2, a 3 of the elements. The disturbance v represents a

transverse sound pressure modelled by uncorrelated unit impulses at t-0

concentrated at the three nodal transverse dof. The control force u is applied

at the free end along the transverse dof direction. With the Js given by

(3.4), we seek the minimum of (3.11) for A_[Q,I]_ subject to conditions (3.12).

Here, the weighting matrices were taken as D-102 x diag(K,M), and R-10 "4, and

the initial _i used were ai-_o-lxl0 -7, i-i ..... 3.

Table I lists the family of Pareto optimal designs _i* that minimize

JA, AE[0,.99] along with the corresponding values for Jc, Js and JA. The

variations of the Pareto optimal Jc*(A), Js*(A) and JA*(A) are shown in Fig. 2.

A number of observations can be made from Table i and Fig. 2:

(i) The noncommensurate nature of the two costs Jc and Js is apparent as the

weight is shifted between them: while Jc is a strictly decreasing

function of A, Js is a strictly increasing function of A. This is

consistent since a stiffer structure requires less control energy.

(li) Except near A-0, the optimal structural shapes that minimize JA for the

disturbance, choice of D and R, and control forces described above are

essentially _i-_2 near the fixed end, and a much smaller _3 near the

free end. This is a physically plausible optimum shape that minimizes

the mixture of high strain energy density near the fixed end and high

kinetic energy density near the free end. Other choices of disturbance,

control location and D, R are expected to alter the optimal beam shape.
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(iii) Although the design at A-0 is guaranteed to be globally optimal

(Proposition 4.1), it is possible that designs generated as A is

continued may be only locally optimal• To assess this possibility, the

optimal designs listed for A-.200, A=.700 and A-.900 were re-examined

separately• For each case, the minimization was restarted with randomly

selected initial ei values. In most cases, the minimization converged

to the same or to a higher minimum than obtained in Table. I.

Table i. Pareto Optimal Designs of Example I

0.0

•000001

.00001

.0001

.005

.010

020

040

i00

200

30O

400

500

600

.700

.800

.900

.940

.980

.990

Optimal Design xl0 -3

al a2 a3

00010

00035

00116

00570

0585

0801

113

.159

237

367

425

563

622

795

886

1.20

1.68

1.93

3.37

3.95

00010

00038

.00114

00625

0708

0802

iii

155

249

349

457

532

650

751

934

1 14

1.59

2.07

3.22

4.40

00010

00032

00077

00287

0187

0212

0300

0438

0761

112

154

189

231

279

346

44

62

82

1.37

1.81

Jc Js JA

350000

96000

30800

5870

495

391

265

177

.007

.026

.076

.369

3.68

4.52

6.33

8.90

6

8

ii

15

007

122

384

955

14

89

52

64

102

61.8

46.1

35.50

27.93

21.33

16.86

11.78

7.30

5.40

2.58

1.81

14.00

20.62

25.80

31 97

37 43

45 45

53 92

69 39

96 98

119.9

198.2

253.6

22.77

28.86

31.92

32.99

32.68

30.97

27.98

23.30

16.27

12.27

6.49

4.33

Example 2: The beam in this example (See Fig. 3) simulates a flexible

appendage (length = 45 m) attached to a rigid hub (inertia - 50 kg.m 2) to which

a control torque is applied to counteract the transverse unit impulse at the

free end. The beam is modelled by three finite elements of constant width -

.001 m, but whose nodal depths dI ..... d4 represent design variables having a

lower bound m .001 m. Here again, Js represents the total mass of the flexible

beam (excluding the hub). For the control objective Jc, the response energy is

weighed by D1 so as to minimize the transverse free end displacement, and R is
taken - l.xl0 "4.

Table 2 and Fig. 4 represent analogous results to those presented for

Example I in Table I and Fig. 2. In addition to observation (i) of the

previous example which holds here as well the following remarks can be made
with reference to the results of this example:
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(i)

(il)

For small values of A (e.g. A-0.1), where the total mass Js dominates

the minimization of JA, the optimal shapes tend to have a small slope

from dl_d24d3, followed by a sharper slope from d34d 4. As A increases,

minimizing Js becomes less important than minimizing Jc (tip

displacement response energy plus control energy). As a result, the

beam becomes gradually stiffer, and the monotonic slope from dl_d2_d3_d4

associated with small A values gradually disappears at A=.45, then gives

way to a pronounced inflection of slope for d3_d 4 for A>.45. This

results in a larger allocation of mass at the tip. This type of shape

is physically consistent with the requirements of the two parts of the

control objective Jc: a stiffer structure near the hub that is reduced

toward the tip (free end) makes best distribution of mass, while

minimizing the tip displacement response. On the other hand, a large

mass at the tip (where the disturbance exists) makes the disturbance

less effective thus requiring less control effort.

To confirm the above interpretation, the case of A=0.7 in Table 2 _i.e.
R-10 -4) was re-examined for smaller and larger values of R; R-10" and

R-10 "2, respectively. As Fig. 5 shows, smaller values of R give more

weighting to the tip displacement response energy part of Jc, thus

giving rise to the optimum shape being a stiffer structure near the hub

which is reduced toward the tip. Conversely, larger values of R (e.g.

R-10 -2) give more relative weighting to the control energy part of Jc,

which is best minimized by the presence of the heavier tip mass. It is

interesting to note the similar effect of varying R and varying A on the

optimal shapes.

Table 2. Pareto Optimal Designs for Example 2.

.000

.0001

.001

.010

.i00

.200

.300

.400

.500

.600

7OO

800

9O0

92O

940

960

98O

990

Optimum Design

dI d2 d3 d4

.001 .001

.02404 .02363

.03552 .03485

.05223 .05134

.07699 07559

001

02291

03359

04940

07157

001

01366

02065

03043

05303

Jc Js JA

1.6x10 +I0 .075

3355.26 1.628

482.6 2.404

70.78 3.54

10.03 5.28

.08759

.09550

.I0258

.I0944

.11715

.12657

.13944

.16369

.17299

.18542

.20578

.25035

.29401

08563

09267

09867

10389

10948

11576

12322

13641

14104

.14815

.16117

.19468

.25488

08031

08657

09187

09670

10135

10681

11304

12430

12893

13565

14818

18421

24878

06659

07847

09O85

10470

12176

14516

18055

24923

27374

30544

35131

.42401

.48165

5.33 6.05

3.54 6.62

2.56 7.15

1.93 7.66

1.46 8.22

1.08 8.92

.77 9.87

.47 11.63

.41 12.28

.34 13.18

.26 14.64

.16 17.83

.09 22.20

.075

1.963

2.884

4.21

5.757

5 906

5 703

5 31

4 79

4 17

3 43

2 59

1.59

1.355

1.107

0.83

0.52

0.32
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(iii) Of general interest to problems in combined optimization at least

numerically is the question as to the degree of "roughness" of the

hyper-surface JA(a). A partial answer to this question is provided in

Fig. 6 after introducing idealizations that reduce the number of

variables from four (dI ..... d4) to only two (d3, d4), so that a three

dimensional plot could be generated. Figure 6 shows such a surface in

the neighborhood of the optimum for the case A-0.7 in Table 2. This is

achieved by fixing dl-.13, _llowing d3 and d4 to assume various values

larger and smaller than those in Table 2 for A-0.7, and letting

d2-h(dl+d3). Assuming that the idealizations above (which led to

reducing the dlmensionality of the JA surface) did not alter the basic

topology of JA surface, it appears from Fig. 6 that JA is a smooth

function of the design variables at least in the neighborhood of the

minimum. Furthermore, with these idealizations it appears that JA is

relatively flat near the minimum along the d4 axis, and that the optimum

shape is some linear combination of the four basic shapes depicted at

the corners.

6. CONCLUSIONS

An approach for combined control-structure optimization keyed to enhancing

early design trade-offs has been outlined and illustrated by numerical

examples. The approach employs a homotopic strategy and appears to be

effective for generating families of designs that can be used in these early

trade studies.

Analytical results were obtained for classes of structure/control

objectives with LQG and LQR costs. For these, we have demonstrated that global

optima can be computed for small values of the homotopy parameter. Conditions

for local optima along the homotopy path were also given. Details of two

numerical examples employing the LQR control cost were given showing variations

of the optimal design variables along the homotopy path. The results of the

second example suggest that introducing a second homotopy parameter relating

the two parts of the control index in the LQG/LQR formulation might serve to

enlarge the family of Pareto optima, but its effect on modifying the optimal

structural shapes may be analogous to the original parameter A.
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Figure 1

EXAMPLE 1.
CANTILEVER BEAM PROBLEM

PRESSURE IMPULSE CONTROL FORCEL L

G1 G2 G$

_.-_1. lS m --II- I= 1$ m _1_ I-1$ m---_

STRUCTURAL MOOEL: MASS DENSITY z 1060 Kg/m a, MODULUS z 9.56 x 10 'o N/m 2

MODAL OAMPING • 0.S%

CONTROL: DISTURBANCE • TRANSVERSE PRESSURE IMPULSE CONCENTRATED

AT THE NOOES

RESPONSE ENERGY WEIGHTED BY D - Olag (K,M) x 102,

CONTROL ENERGY WEIGHTED BY R • 1 x 10 4

DESIGN VARIABLES: as, az, _s _- 1 x 10 .7

Figure 2

CANTILEVER BEAM OPTIMIZATION

Jl (mix -

0,S 0.6
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Figure 3

EXAMPLE 2.
HUB-BEAM PROBLEM

HUB

CONTROLTORQUE

DISTURBANCE I 0.001

DT°,
d2 d: d 4

STRUCTURAL MODEL: MASS DENSITY. 1660 Kg/m:, MODULUS • 9.56 x 10 l° N/m2

MODAL DAMPING : 0.5%,

CONTROL: DISTURBANCE • UNff IMPULSE

RESPONSE ENERGY WEIGHTED TO MINIMIZE END DISPLACEMENT, R = 1 x 10.4

DESIGN VARIABLES: dl,-.., d 4 _0.001

Figure 4

HUB-BEAM OPTIMIZATION

Js (mix • 22.20)

0.7 0.9



Figure 5

OPTIMUM SHAPES

IMPULSE

HUB

R= 10"1/

R= 10 .2

Figure 6

d;_(d3,d4) SURFACE NEAR THE MINIMUM, 1 = 0.7
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Abstract

This paper presents parallel processing of real-time dynamic systems
simulation on a multiprocessor systel named OSCAR. In the simulation of

dynamic systems, generally, the same calculation are repeated every time

step. However, we cannot apply the Do-all or the Do-across techniques for
parallel processing of the simulation since there exist data dependencies
from the end of an iteration to the beginning of the next iteration and

furthenM_re data-input and data-output are required every sampling time

period. Therefore, parallelism inside the calculation required for a

single time step, or a large basic block which consists of arithmetic

assignment statements, must be used. In the proposed method, near fine
grain tasks, each of which consists of one or more floating point

operations, are generated to extract the parallelism from the calculation

and assigned to processors by using optimal static scheduling at compile
time in order to reduce large run time overhead caused by the use of near

fine grain tasks. The practicality of the scheme is demonstrated on OSCAR
(Optimally SCheduled Advanced multiprocessoR) which has been developed to

extract advantageous features of static scheduling algorithms to the
maximum extent.

I. I_lOI

High speed dynamic systems simulation, or solution of ordinary
differential equations, has been required to simulate dynamic behaviors of

various systems such as airplanes, missiles, nuclear reactors and robots,
in real-time. So far, the dynamic systems simulation has generally been

performed on traditional analog or hybrid computers or on general-purpose
digital computers by using a simulation language like CSIqP (Continuous

Systems Nodeling Program). However, these approaches have several
problems, for example, operational accuracy and realization of non-linear

functions for the analog computers and high processing cost and real-time

input-output for the general purpose main-frame computers.

In an attempt to resolve these problems, the use of parallel

processing techniques[13-14] has attracted much attention. In fact,
various parallel processing schemes, especially parallel processing using

Prof. Kasahara is also a Visiting Research Scholar of Center for

Snpercomputing R & D, Univ. of Illinois at Urbana-Champaign, 305 Talbot

Laboratory, 104 South Wright Street, Urbana, IL 61801.
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multiprocessor systems[14-15], have been so far proposed[l-4]. The

differences among the schemes lie in the choice of task granularity and

task scheduling. For example, Korn [1] and Koyana [4] employed a large

task size (coarse task-grain) approach where the computation for the
numerical integration of each equation in a set of first-order

simultaneous differential equations was selected as a task. The generated
tasks are assigned properly by the user to a relatively small number of

processors. The functional distribution approach by Gilbert, et al[2],
dealt with each fundamental operation (four fundamental arithmetic

operations, integration and so on) as a task to be assigned to a dedicated

hardware operational unit. Yoshikawa, et al[3], also adopted an approach

where each fundamental arithmetic operation was assigned to one processor.
The common problem left unsolved to these approaches was poor parallel
processing efficiency stemming from the lack of efficient methods which

allocate the generated tasks onto an arbitrary number of parallel

processors in an optimal manner. This paper proposes a parallel

processing scheme for the solution of the above-mentioned problem by using
static minimum execution time multiprocessor scheduling algorithms[5][lO]
already developed by the authors for optimum task allocation. The

proposed parallelizing compilation scheme consists of the following

processes: task generation, optimal task scheduling, and generation of
machine codes to be executed on respective processor element.

The effectiveness and practicality of the proposed scheme are
demonstrated on OSCAR's processor cluster with sixteen 32-bit RISC-like

processor elements which has been designed to extract advantageous
features of static scheduling at compile time to the maximum extent.

II. A PARALLEL PROCESSIMG SCHENE USIMI STATIC _IIE

Generally, dynamics of most continuous-time systems can be modeled by

the following explicit first-order simultaneous ordinary differential
equations:

dxi/dt=fi(t,xl,x 2 ..... xm) (i=1,2 ..... m)

Therefore, the dynamics systems simulation can be regarded as the

solution of the ordinary differential equations. Hence, this paper

handles parallel solution of the equations using various numerical

integration formulae such as Euler, Trapezoidal, 3rd- and 4th-order Adams

Bashforth, 4th-order Runge Kutta and 4th-order Adams Moulton (predictor-

corrector method) listed in Table I. In applying these integration

formulae, the computation required for each integration step consists of

arithmetic assignment statements to evaluate the derivative of each

equation and to perform numerical integration. Between consecutive

iterations, there exist data dependencies[16-lT] from the end of an

iteration to the beginning of the next iteration. Furthermore, for real-

time simulation, data input and data output are required every iteration

or few iterations, namely every sampling period. Therefore, we cannot

apply Do-all and Do-across techniques to parallel processing of the

dynamic systems simulation which are popular parallel processing schemes

for a Do loop on a multiprocessor system[18][19].

Taking into consideration these facts, in order to realize efficient

parallel processing of the simulation, we must parallel process a block of

arithmetic assignment statements, or a basic block, in each iteration.
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However, the parallel processing of the basic block on a multiprocessor

system has been thought to be very difficult since data transfer overhead

and synchronization overhead are relatively large. The proposed scheme
allows us to minimize these overheads and to realize efficient processing

by generating optimized machine codes based on the static schedule at

compilation time.

A. Task Generation

As mentioned before, in the dynamic systems simulation, we must

process each iteration in parallel though we can sometimes unroll a few
iterations if data input and output should be made every few iterations.

[n order to process the iteration in parallel, first of all, we must

generate tasks with suitable granularity, which are basic units assigned

to processors. As for the task granularity, several levels may be

perceived: equation level, operation element level, and intermediate
level. In the case of equation level granularity, the computation related

to each subscript i for each numerical integration formula listed in TABLE

I (the computation of a derivative and that of numerical integration

corresponding to each formula for each variable X i) is considered to be a

task. When operation element level granularity is adopted, the computation

for each derivative or for each numerical integration is subdivided into

finer fundamental operation elements such as the four arithmetic

operations and trigonometric functions, each of which is taken as a task

and allocated to the processors (fine granularity). In the intermediate

task granularity, several floating point operations are combined to form a

task. For instance, when Van der Pol's equations

dxl/dt = x2 2

dx2/dt Cx2-x I *Ex2-x1

is decomposed into fairly small intermediate-level tasks, three

multiplication tasks, two subtraction tasks, and two integration tasks

(including several floating point operations) are generated. Fig. 1

depicts the block diagram representation of the seven tasks, with data

dependencies explicitly shown.
There exists no general rule for determining the best task

granularity applicable to all kinds of dynamic systems. When parallel

processing is performed on a multiprocessor system with little data

transfer and synchronization overheads among processor elements, the

operation element level granularity is known to be most advantageous to

achieve minimum processing time because parallelism can be exploited to

the maximum extent. For a large-scale problem (the order of simultaneous

equations is very high) or a multiprocessor system with poor data transfer

capabilities, however, the operation element level granularity does not

always give the best performance. In other words, much attention must be

paid to such factors as processor speed, interprocessor data transfer

speed, size and parallelism inherent to the problem in hand, and

complexities of scheduling mechanisms (both software and hardware) [7].

Namely, we must choose the best granularity for each problem and each

multiprocessor system. For this reason, the proposed parallel processing

scheme provides with two methods for the input of simulation source

programs. The first method employs a simplified simulation language shown

in Fig.2, which allows direct input of mathematical equations. The user

can specify arbitrary task granularity from the operation element level to
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the equation level. The second method facilitates the input of block
diagram representations such as those employed for analog computer. As

shown in Fig.l, each operational element of analog computer (adder,

integrator, etc.) can be taken as a task, to realize near fine

granularity. Medium granularity can also be dealt with by combining
automatically several tasks with near fine granularity. (This process is

referred to as task fusion). In what follows, emphasis will be placed on

the case of near fine granularity, namely the finest granularity that can

be treated by use of the proposed scheme on a multiprocessor system named
OSCAR mentioned later.

Next, the proposed parallel processing scheme analyzes precedence

relations caused by data dependencies among the generated tasks and

represents the task precedence relations by a task graph like Fig. 3 which
is a directed acyclic graph (DAG). The precedence constraints represent

the restrictions existing among tasks regarding the execution order of
tasks. The existence of task i precedent to task j means that the

execution of task j cannot be initiated before the completion of task i.

The precedence relation can be examined by the data flow analysis among
tasks. When the data flow analysis is made, the output variable of each

integration task is treated as an initial value. Each node in the task

graph stands for a task and an arc between a pair of nodes for the

precedence constraint. Nodes 0 and 8 are not actual nodes but dummy nodes

introduced for the sake of convenience. They represent the entry node and
the exit node, respectively. The figure beside each node represents the

estimated processing time of the corresponding task. Since the actual

processing time does not usually take on a fixed value but varies with the

data to be processed, the average value or the worst-case value is

employed as the input[7], which is used in the scheduling algorithms to

be described in the subsequent section. When the average value is used for

each task, the resultant schedule gives the minimum value of the average

processing time of the task set. Similarly, when the worst-case value is

used, the worst-case processing time is minimized. However, OSCAR, which

is a target machine in this paper, can execute all instructions including

a few floating point operations in one clock by employing RISC like

processor. Therefore, we don't have the above mentioned problem on OSCAR,

a compiler can estimate accurate processing time of each task.

Once a task graph is generated, the minimum possible processing time

achieved by parallel processing of the tasks can be estimated as the

critical path length tcr of the task graph. In Fig.3, the critical path is

shown by double-line segments.

An unique task graph can also be generated by following simple

procedures in the case of the block diagram input mode. The task graph

shown in Fig. 3 represents the computation in one integration step when

the tasks are generated in the size of near fine granularity and the

numerical integration method employed is Enler, Trapezoidal or 3rd- or

4th-order Adams Bashforth. The integration task involves computation

specific to each numerical integration method. When the 4th-order Runge-

Kutta method is employed, k I through k 4 need to be evaluated, and the

computation described by this task graph is repeated four times or the

expanded task graph involving the computation repeated four times is

processed for each integration step. In the former case, the content of

each integration task to be processed differs with the iteration connt in

order to evaluate kI through k4 and their weighted average. Similarly,

when a predictor-corrector method such as the 4th-order Adams-Noulton is

used, the task graph is computed twice or the expanded task graph to
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represent the unrollc<l computation is processed for each integration step.
In the former case, the computation corresponding to the predictor of the

integration task is performed first, followed by the computation for the
corrector.

As mentioned earlier, the task graph shown in Fig.3 represents the

case where the tasks are generated in the size of near fine granularity.

When coarse granularity at the equation level is employed for task

generation, the portion surrounded by the dashed lines becomes a task.
Also, in the case of fine granularity, the portion of each integration

task is replaced by a subgraph generated by subdividing it into the

operation element level.
It should be mentioned here that parallel processing scheme proposed

in this paper is so designed that the tasks generated in either fine or
near fine granularity level can be fused automatically without sacrificing

much parallelism. As a simple example, when there exist a pair of
successor task (son node) with only in-edge and the predecessor task

(father node) with only one out-edge, the two tasks are fused into a

single task. Even such an easy task fusion technique allows the
optimization of resister utilization and avoids unnecessary data transfer

for more efficient parallel processing.

B. Scheduling Algoritlms

In order to process the set of tasks on a multiprocessor system

efficiently, the assignment of tasks onto the parallel processors and the

execution order among the tasks assigned to the same processor must be

determined optimally. The problem which determines the optimal assignment

and execution order can be treated as the traditional multiprocessor

scheduling problem of which the objective function is the minimization of

the parallel processing time or schedule length [5][8]. To state formally,

the scheduling problem is to determine such a nonpreemptive schedule that

the execution time or the scheduling length be minimum, given a set of n

computational tasks T=(T1 ..... Tn), precedence constraints among the

tasks and n processors with the same processing capability. This problem,

however, has been known as a "strong" _IP-hard problem [9]. In other

words, unless P--NP, it is impossible to construct not only a pseudo-

polynomial time optimization algorithm but also a fully polynomial time

approximation scheme. With this fact in mind, the authors have

successfully constructed a heuristic algorithm named CP/MISF and an

efficient practical algorithm called DFIIHS [5]. The former algorithm can

provide very precise approximate solutions quite rapidly because of its

very low time complexity. The latter algorithm can obtain optimal

solutions or approximate solutions with guaranteed accuracies from optimal

solutions by combining CP/NISF and depth-first search. In what follows,

the two algorithms are explained very briefly. For further details, the

reader is referred to the literature [5].

1) CP/NISF(Critical PathlNost Immediate Successors First) 8ethod

This method essentially is a kind of list scheduling algoritlms.

step.1 Determine the level Ii for each task. The ]i is the longest path

from N i to the exit node.

step.2 Construct the priority list in the descending order of Ii and

the number of immediately successive tasks.

step.3 Execute list scheduling [8] on the basis of the priority list.

Since the list scheduling may be regarded as a method to construct the

174



0_: P_O_ _UALITY

schedule for the case where a set of tasks are processed in parallel in
the data-driven manner considering the priority assigned to each task. it

can be easily extended to dynamic scheduling at run time.
Furthermore, the list scheduling can be also modified to eliminate

unnecessary data transfer among processors. In the modified algorithm

CP/DT/MISF method[lO], when the tasks with the same priority are allocated

to a processor, a task is allocated to the processor which needs the
minimum data transfer to execute the task. This simple modification

significantly decreases the data transfer overhead for the multiprocessor

system with poor data transfer performance.
Its average performance was evaluated for a total of over nine

thousand test cases by comparing the CP/HISF solutions with the lower

bound fanction[11]. Optimal solutions were obtained for 67 percent of the

cases tested. Approximate solutions with errors of less than 5 percent
were obtained for 87 percent of the cases and those with errors of 10

percent for 98.5 percent of the cases. The worst-case performance of

CP/MISF, i.e., the error of the worst-case solution t obtained by

CP/MISF from the true optimal solution top t is given by

(t-top t ) / topt_l/m [5].

In addition, the time complexity of CP/MISF is O(n2+mn). For problems with

about one thousand tasks, it only takes a few ten seconds on a HITAC _280fl

system. In summary, CP/MISF is suitable for the solution of very large

problems with hundreds or even thousands of tasks.

2) DF/IHS (Depth First/Implicit Heuristic Search) Method

DF/IHS is an optimization/approximation algorithm to determine schedules

(solutions) which are always more precise than those by CP/NISF. The
method combines CP/MISF and depth-first search in a special manner and

reduces markedly space complexity {memory requirements) and average

computation {search) time. It is so practical and powerful that optimal
schedules for most large-scale problems involving a few hundred tasks for

a total of some ten parallel processors can be determined in several
seconds to one hundred seconds on an M280H. Optimal solutions could be

obtained for 75_ of the test problems where the upper limit of search time

was set to 180 seconds [5]. The effectiveness of DF/IHS may be recognized

by considering the fact that use of dynamic programming could provide

optimal solutions for small problems with less than 40 tasks even for two

parallel processors. In the case of parallel processing on a limited

number of processors, it is known that there exist such task graphs that
the minimum processing time cannot be attained by data driven execution or

the list scheduling [12]. For these task graphs, use of DF/IHS can

determine the optimal schedule that gives rise to the minimum processing

time by forcing some processors to be idle for a certain time period. This
fact implies the possibility of more efficient parallel processing than
data flow machines. In summary DF/IHS is very useful when CP/MISF fails

to obtain an accurate solution for problems with several hundred tasks.

C. MachimeCodeGeneratiom

For the efficient execution on an actual multiprocessor system, the

optimal machine codes tailored to the given system must be generated by

using the scheduled results. The scheduled results give us the information
about tasks to be executed on each processor element, the execution order
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of tasks on the same processor element, the rough estimates of waiting

time of the tasks which wait for the data from other tasks assigned to

other processors, the tasks to be synchronized and so on. Therefore, we

can generate the machine cedes for each processor by putting together the

codes for the tasks assigned to the processor and attaching the codes for

synchronization and data transfer among processors. The "version number"

method is used for the synchronization among tasks. The version number

corresponds to the number of times of iterations or integration steps.

Each "writer" task updates the version number on the common memory to the

number of current integration step for itself after it finishes writing

the shared data. And each "reader" task checks the version number if the

number is the same as the number of current integration step to the reader

task. All processor elements (FE's) have the same version numbers during

one integration step and update or increase the number at the end of the

integration step. Updating the version number on each PE by respective

PE's allows us to eliminate the need to update the version number (or to

reset a flag used in test & set or semaphore) attached to each shared data

on a common memory when the next integration step is started. Therefore,

the version n_mber method can minimize the frequency of access to the

common memory for task synchronization in this application.

He can also optimize the codes to minimize various processing

overheads by making full use of all information which is obtained as the
result of static scheduling. For example, the information about task

assignment and execution order allows the optimized use of the registers

of the processor when the tasks allocated to the same processor exchange

data. The optimal use of registers reduces the processing time markedly.

The knowledge about the estimated waiting time helps prevent the
degradation of data transfer performance caused by frequent bus access to

check the existence of the required data (data level synchronization) by

the waiting task. In other words, if it is estimated that the task must
wait the data for a long time, the frequency to check a flag on a comma

memory is reduced. In addition, we can minimize the synchronization

overhead by carefully taking into consideration the information about the

tasks to be synchronized, the task assignment and the execution order. For

example, let tasks A, B and C be allocated to processor 1 and tasks D and
E to processors 2 and 3 respectively as shown in Fig.4 and data among the

tasks be transferred via a common memory. Then task B does not need to

check the flag which shows the completion of task A because both tasks are
allocated to the same processor. Task E has no need to check the flag

which indicates the completion of task D because the termination of task D

has already been confirmed by task C or B.

In the parallel processing scheme, the transfer of output data of

integration tasks is not represented on a task graph since data flow

analysis is performed on the assumption that output data of the
integration tasks has been given as initial values. In actual processing,

however, those data must be transferred to several tasks allocated on

other PE's between the end of an integration step and the beginning of the

next integration step since, during one integration step, all the tasks
except the integration tasks use the output data of the integration tasks

g_nerated in the previous integration step. The data transfer at one time

causes bus congestion. In order to prevent the bus congestion, two copies

of machine cxxtes for each PE which are assigned different data storages

are generated and executed alternatively for every integration step.

Generating the two copies of codes allows each integration task in a copy
of codes to write or transfer its output data, as soon as it completes
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execution, onto a data storage assigned for the next integration step or

another copy of codes. In other words, it allows distributed bus access
and also to eliminate data synchronization to check the completion of the

integration tasks because the output data of the integration tasks has

already been transferred before the end of each integration step.

The optimal machine codes for each PE generated in the emy mentioned
above are loaded to the local instruction memory of each processor element

and executed asynchronously. The four steps of the proposed parallel

processing scheme described in this section can be performed automatically

by a special purpose compiler.

III. PERFOBI%MlCl_ KVALUATIONONOSCAR

This section discusses the performance evaluation of the proposed

parallel processing scheme on a prototype multiprocessor supercomputi_g

system named OSCAI_ being developed by the authors.
In the following, as an example of parallel processing of the

practical dynamic systems simulation for evaluating the performamceof the

proposed scheme on OSCAR, dynamics simulation of a hot strip mill control
in a steel making plant is treated. The simulation program cu be

represented by a block diagram shown in Fig. 5. In this example, near

fine task granularity has been chosen in which each integration task
consists of several floating point operations and the other tasks consist

of only one floating point operation. By the task generation method usimg
near fine granularity, fifty-one tasks involving nine integratiom tasks

were generated. Fig. 6 is a task graph generated from Fig.5 aut_mmtica]ly

by a special purpose compiler.
OSCAR is a hierarchical multiprocessor system which has a plurality

of processor clusters as shown in Fig. 7. Its goal is to realize, by the
combined use of static scheduling and dynamic scheduling, efficient

parallel processing of Fortran programs and a variety of applications

including those which have so far been difficult to process efficiently
because of a lot of scalar assignments involved.

One processor cluster(PC) h_e has already been completed. On

the PC, various parallel processing application will be implemelted. The
PC involves sixteen processor elements, three common memories, a local

control processor and three shared buses. Each PE consists of a 32-bit
custom-made RISC-like processor with 64 genera] purpose registers which

executes all instructions including a few floating point operatimes in ore

c]ock (clock:2OOns), a 256-KN local data m_ory, a 2-KN two-port memory to
communicate with other PE's, two banks of 128-KN instruction memory mad a

DPIA controller. The _ controller realizes high-speed transfer of a block

of data to the common memories and the two-port memories of other PE's aml

dynamic loading of a set of instruction codes from the cemmoanemories to
one of the instruction memory banks during execution. The reduced
instruction set and the one-clock-ex_ion of the all instructioms mmke

the estimation of task processing time for the scheduling easy mad

accurate. For interprocessor communication, three types of data tramsfer

modes are provided such as broadcast mode, direct data transfer mode to
the two-port memory of another PE or indirect data transfer mode via a

common memory. Each mode can be used for both single word data transfer
and block data transfer. Each common memory accepts simultanems$ acce_m_s
from three buses. The data transfer speed of the three buses totals to

60NByte/s.
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Nhen we operate one PC of OSCAR, a Unix-based workstation is used as
the host computer which generates machine codes for each PE by using

static schedule providing the minimal processing time and downloads the

codes to each PE. In the generated codes, bus access timing by PE's, data

transfer modes and use of 64 registers employed to exchange data among

tasks assigned on the sane PE are optimized. In addition, redundant task
synchronization is also eliminated as mentioned before. An timing chart

representing execution of the machine codes is shcncn Fig.8. This chart can

be regarded as a precise simuLate_l result of actual parallel processing on

OSCAR. In the figure, for PE3, characters such as "LD30","25R*,"wait", _
PE5" and so on are written. These characters mean to load input data for

task 30 from a local data memory to registers, execute task 30 and keep

its result in registers, and wait for a while to directly transfer the

output data of task 30 to PE5. At that time, PE3 waits for bus access

since PE1 is accessing bus for data broadcasting. In OSCAR, another PE
cannot access the busses while a PE is broadcasting data. Furthermore _U26

51"," PE2","WAIT",'FC44" and _38R" represent to execute task 51 by using

output data of task 26 on registers, transfer its output data to PE2, wait

for output data of task 44 from PES. check a flag showing completion of
data transfer from task 44, execute task 38 and keep its output data on a

register.

Fig.9 shows the measured parallel processing time on OSCAR (solid

lines) and simulated parallel processing time (dotted lines and chained
lines) of 5! tasks in Fig.6. In this example, 4th-order Adams-I_shforth

method was used. The measured processing time on OSCAR of the near fine

granularity tasks was reduced from 108.7 _ts for one PE to 37.2 us (1/2.92)
for seven PE's. Next, the task fusion technique which generates a coarser

grantllarity task by combining several tasks in order to reduce data

transfer overhead with the minimum loss of parallelism is evaluated. As a

simple example, those tasks surrounded by dotted lines in Fig. 6 can be
fused and twenty-two medium granularity tasks are generated automatically.

Processing time of the medium granularity tasks (after task fusion)

decreases fro_ 105.8 us for one PE to ,36.8 us (1/3.01) for seven PE's.
From the x'e._u|ts, it has been confirmed that the determination of the most

suitable task granularity is very important and that the automatic task
fusion is usefuL.

The two dotted lines show the simulated processing time. It is clear
from the figure that there exists little difference between the measured

processing time and the simulated processing time or an execution image of

machine codes generated by using static scheduling. In the light of this

fact, we can conclude that the generation of the precisely optimized

machine code using static scheduling is very useful for OSCAR.
The processing time shown above, however, represents the degraded

performance of OSCAR since OSCAR is still in a stage of operation testing.

Though OSCAR can normally transfer two words data in 5 clocks, the

processing time were measured in a degraded operating condition where two
words data transfer takes 9 clocks. Therefore data transfer overhead will

be reduced by half in the normal operating condition. The chained lines in

Fig.9 show the precisely simulated processing times in the normal
condition for the near fine granularity before task fusion and the m_ii_m

granularity after task fusion. The processing time after task fusion

decreases from 104.8 us _or one PE to 28.8 us for seven PE's (1/3.64).
From the experiment mentioned above, it has been confirmed that OSCAR's

architecture, especially one clock execution of all instructions and three

types of data transfer modes, al]ow_ t_s to efficiently parallel process
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the dynamic sysL'ems simulation by extracting the advantageous features of

static scheduling to the maximum extent.

V. CONCLUSIONS

In this paper, the authors have proposed a parallel processing scheme

of the dynamic systems simulation using static optimal multiprocessor

scheduling algorithms and shown that the scheme allows us to realize

efficient parallel processing on OSCAR which has been designed to extract

the advantageous features of static scheduling to the maximum extent.
More precisely speaking, the special purpose compiler for OSCAR using the

proposed scheme can generate suitable granularity tasks, the minimal

execution time schedule and optimized machine codes for each processor in
which data transfer and synchronization overheads are minimized and the

registers on each processor are used optimally.
Furthermore, it has been confirmed that the architectural support in

OSCAR for a parallelizing compiler using static scheduling is very
useful. The author._ are planning to develop a practical dynamic systems

simulator using OSCAR which can simulate dynamics of flying objects like

airplanes and missiles, nuclear reactors, robot systems and various

industrial plants.
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Fig.l Block diagram for Van der Pol

eq..

begin

a=lntegral (b,O. 0[) ; {l!

b:integral(c,O. 0[) ; {21

c--d-a; {3)

d=g-e ; {4}

e=f,g; {5}

f=a*a; (6}

g=b*l (7!

end.

Fig.2 Assignment statements for

der Pol eq..

Van

0

I

1366 a
I
I
J

Fig.3 Task graph for Van der Po] eq.
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• _._> Precedence
relations

FS Flag set

FC Flag check

C) Unnecessary

Fig.4 Minimization of synchronization
overhead.
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Fig.5 An example of block diagram.
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Fig.6 Task graph for Fig. 5.
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Abstract. A general method for parallel and vector numerical solutions of stochastic

dynamic programming problems is described for optimal control of general nonlinear, con-

tinuous time, multibody dynamical systems, perturbed by Poisson as well as Gaussian ran-

dom white noise. Possible applications include lumped flight dynamics models for uncertain

environments, such as large scale and background random atmospheric fluctuations. The

numerical formulation is highly suitable for a vector multiprocessor or vectorizing super-

computer, and results exhibit high processor efficiency and numerical stability. Advanced

computing techniques, data structures, and hardware help alleviate Bellman's curse of di-

mensionality in dynamic programming computations.

1. Introduction. The primary motivation for this research is to provide a provide

a general computational treatment of stochastic optimal control applications in continuous

time. In addition, fast and efficient methods are being developed by the optimization of

stochastic dynamic programming algorithms for larger multibody problems. The optimiza-

tion will help alleviate Bellman's curse of dimenswnality, in that the computational problem

greatly increases as the dimension of the state space increases. Optimization consists of par-

allelization and vectorization techniques to enhance performance on advanced computers,

such as parallel processors and vectorizing supercomputers. General Markov random noise

in continuous time consists of two kinds, Gaussian and Poisson. Gaussian white noise, being

continuous but nonsmooth, is used to model background random fluctuations, such as tur-

bulence and external field variations. Poisson white noise (its frequency spectrum is also flat

like 'Gaussian noise), being discontinuous, is useful for modeling large random fluctuations,

such as shocks, collisions, unexpected external events and large environmental changes. Our

general feedback control approach combines the treatment of both linear and nonlinear (i.e.,

singular and nonsingular) control through the use of small and non-small quadratic costs.

The methods also handle deterministic and stochastic control in the same code, making it

convenient for checking the effects of stochasticity on the application. Some actual appli-

cations are models of resources in an uncertain environment [15], [11], [8]. Some potential

applications are flight dynamics under random wind conditions [2] and other resource models

[12].

The Markov, .multibody dynamical system is illustrated in Figure 1 and is governed by

the stochastic differential equation (SDE):

dy(s) = F(y,s,u)ds + G(y,s)dW(s) + H(y,s)dP(s), (1.1)
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CONTROLS

[U,(Y, s)]m×l

STATES _,

ENVIRONMENT

[Fi(Y, U,s)]m×l Nonlinearities

[wi(s)],×, CaussianNoise

[P_(s)]q×_ Poisson Noise

Feedback in time dt /2

Figure 1: The multibody dynamical system.

y(t) = x; 0 < t < s < tj; y(s) E V_; u E T),,,

where y(s) is the m × 1 multibody state vector at time s starting at time t, u = u(y,s) is

the rt × 1 feedback control vector, W is the r-dimensional normalized Gaussian white noise

vector, P is the independent q-dimensional Poisson white noise vector with jump rate vector

[)_i]q×l, F is the m × 1 deterministic nonlinearity vector, G is an m × r diffusion coefficient

array, and H is an m × q Poisson amplitude coefficient array.

The control criterion is the optimal expected cost performance,

V*(x,t) = min [MEANp,w [V[y,s,u,P,W]ly(t) = x]], (1.2)

over some specified optimal control set :D=, where the total cost is

Y[y,t,u,P,W] = ftt' ds C(y(s),s,u(y(s),s)) ,

on the time horizon (t, ts). In (1.3), the instantaneous cost function C

assumed to be a quadratic function of the control,

(1.3)

= C(x, t,u) is

C(x,t,u)= Co(x,t)+ c, (x,t)u+ ½uTc,(x,t)u. (1.4)

The unit cost of the control increases with u when C2 is positive definite. For example, the

cost criterion could be minimal fuel consumption, minimum distance to target or minimum

time to target. No final salvage value is assumed at final time, so V is zero at t = t/.

In addition, the deterministic, nonlinear dynamics in (1.1) are assumed to be linear in

the controls,

F(x,t,u) = Fo(x,t)+ Fl(x,t)u, (1.5)
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but nonlinear in the multibody state variable x.

For numerical purposes, it is more convenient to convert equations (1.1)-(1.2) to an

effectively deterministic partial differential equation using Bellman's of optimality as illus-

trated in the optimization step from optimal control vector U* to optimal expected costs

V* in Fig. 2. The Bellman functional PDE of stochastic dynamic programming,

OPTIMAL
CONTROLS

[u;(x,t)].,x,

OPTIMAL
EXPECTED

COST

v'(x,t)

Figure 2: The optimization step from controls to costs.

0 = Vt* + L[V*] =- Vt* + F0rVV ' + ½GGT(x,t):VVrV *

q

+ _ A,-[ V*(x+ H,(x,t),t)- V*(x,t)] (1.6)
l=l

Jr Co -3t- (1V*-uR)Tc2 U* ,

follows from the generalized It5 chain rule for Maxkov SDEs as in [7] and [15], where U* is

the optimal feedback control computed by constraining the unconstrained or regular control,

UR(x,t) = -C_-'(Cl + FlrVV*), (1.7)

to the control set T),. In general, the Bellman equation (1.6) is nonlinear with discontinu-

ous coefficients due to the last term, (_U* - UR)rC2U *, in (1.6) and due to the compact

relationship between the constrained, optimal control and the unconstrained, regular control,

U/ (x,t) = min[U_x,,,min[Umin,i, UR,i(x,t)]], (1.8)

for i = 1 to n controls, where Umm is the minimum control constraint vector and U_,_x

is the maximum. As the constraints are attained, the optimal control U*, changes from

the regular control, UR, to the single bang control values, U,_in or U,,,a_, which in general

axe functions of state and time. In (1.6), the symbol (:) denotes the scalar matrix product

A : B = _1 _'=1 Ai#Bij, assuming B is symmetric. It is important to note that the

principal equation, the Bellman equation (1.6), is an exact equation for the optimal expected

value V. and does not involve any sampling approximations such as the use of random number

generators in simulations.
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Sincethere is no final salvage value and since (1.6) is a backward equation (unlike the

usual diffusion equation, which is a forward equation), the final condition is that V*(z,tl) =

0 using (1.2) and (1.3). On the other hand, boundary conditions for the PDE of stochastic

dynamic programming (1.6) are not as simple or as straightforward to state. This is because

the boundary conditions vary significantly with the form the deterministic linearity function

F, the Gaussian noise W, and the Poisson noise P. Thus for treatment of general boundary

conditions, it is most practical to directly integrate (1.6) for the special values of z, or to use

the objective functional directly as defined in (1.2) and (1.3). The problem with boundary

conditions is also present in stochastic application in continuous time, even when there is no

control variable or optimization in the problem.

As the number of multibody state variables, m, increases, the spatial dimension rises,

and computational difficulties are present that can compare to those of three-dimensional

fluid dynamics computations. This is the famous Bellman's curse of dimensionahty [3]. Thus

there is a great need to make use of advanced-architecture computers, to use parallelization

as well as vectorization. The Panel on Future Directions in Control Theory [6] stresses the

importance of making gains in such areas as nonlinear control, stochastic control, optimal

feedback control and computational methods for control. This paper is a preliminary report

on our efforts to treat all of the above mentioned areas combined from the computational

point of view.

2. Numerical Methods. The integration of the Bellman equation (1.6) is backward

in time, because V* is specified finally at the final time t = t/ , rather than at the initial

time. A summary of the discretization in state and backward time is given below:

x --- Xj = [Xo,]_,,1 = [Xix + (j,- 1)-DXi]_,,1,

j = [ji]._×l , whereji = ltoMi, fori = ltom;

t ----, Tk = t! - (k - 1).DT, fork = ltoK;
* *

V (Xj,Tk) --_ Vj,k ; L[V I(Xj,T+!) ----}

(2.1)

where DXI is the mesh size for state i and DT is the step size in backward time.

The numerical algorithm is a modification of the predictor correetor, Crank Nicolson

methods for nonlinear parabolic PDEs in [5]. Modifications are made for the switch term

and delay term calculations. Derivatives are approximated with an accuracy that is second

order in the local truncation error, at all interior and boundary points. The Poisson induced

functional or delay term, V*(x + Ht, t), changes the local attribute of the usual PDE to a

global attribute, such that the value at a node [X + HILi will in general not be a node. Linear

interpolation, with special handing of point near the boundaries, maintains the numerical

integrity compatible with the numerical accuracy of the derivative approximations. Even

though the Bellman equation (1.6) is a single PDE, the process of solving it not only produces
,

the optimal expected value V , but also the optimal expected control law U*. This is

because the PDE is a functional PDE, in which the computation of the regular control is fed

back into the optimal value and the optimal value feeds back into regular control through

its gradient. The nonstandard part of the algorithm is to decompose this tightly coupled

analytical feedback so that both the value and the control can be calculated by successive
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iterations, such that eachsuccessiveapproximationof oneimprovesthe next approximation
of the other. While our proceduremaylook superficiallylike a standardapplication of finite
differences,it is not due to the nonstandardfeaturesmentionedabove. For thesereasons,
we arenot awareof any other successfulstochasticdynamic programmingcodethat treats
anywherenearthe generalityof applicationsthat wetreat. Variationsof this algorithm have
beensuccessfullyutilized in [15]and [8].

Prior to calculating the values,_,k+x, at the new (k+ 1)a time step for k = 1 to K - 1,

the old values, Vj ,k and l_,k-1, are assumed to be known, with Vj0 = Vjl. The algorithm

begins with an extrapolator (x) start:

v(X) = }(3.vj, - (2.2)
,k+l

which are then used to compute updated values of the gradient of V*, the second order

derivatives, Poisson functional terms (V* at (x + H)), regular controls UR, optimal controls

U*, and finally the new value of the Bellman equation spatial functional Lj,k+0.5. The

extrapolation step greatly speeds up the convergence of the corrector step, except at the

initial step. These evaluations are used in the extrapolated predictor (xp) step:

v (xp) !L (x) (2.3)
vj,k+ 1 = Vj, + DT. 2 J'k+ I.

which are then used in the predictor evaluation (xpe) step:

v(xpe) 1t _/(xp)
,k+l -- 21,'j,k+i + l/],k) '

(2.4)

an approximation which preserves numerical accuracy and which is used to evaluate all terms

comprising Lj,k+o.s. The evaluated predictions are used in the corrector (xpec) step:

lz(xpec,7 + 1 ) (2.5)•j,k+l = l_,k + DT • L (xpe')')
J,k+ 1

for 3' = 0 to "/,.,a.while stopping criterion unmet, with corrector evaluation (xpece) step:

v(xpece,7 + 1) ,_.tV.,(xpec,7 + 1)= j,,,+, + (2.6)
j ,k+_

The predicted value is taken as the zeroth correction. The stopping criterion for the correc-

tions is a heuristically motivated comparison to a predictor corrector convergence criterion

for a linearized, constant coefficient PDE [13]. The stopping criterion is computed with

a robust mesh selection method, so that only a few corrections are necessary. The selec-

tion of the mesh ratio, the ratio of the time step DT to the norm of the space or state

step DX, guarantees that the corrections will converge whether the Bellman equation (1.6)

is parabolic-like (with Gaussian noise) or hyperbolic-like (without Gaussian), according to

whether or not an explicit second derivative is in the equation.

Parallelization and vectorization of the algorithm was done by what might be called the

"Machine Computational Model Method," i.e., tuning the code to optimizable constructs
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that are automatically recognized by the compiler, with the Alliant FX/8 vector multi-

processor [1] in mind. All inner double loops were reordered to fit the Alliant concurrent

outer - vector inner (COVI) model. All non-short single loops were made vector-concurrent

Short loops became scalar-concurrent only. Multiple nested loops were reordered with the

two largest loops innermost. A total of 37 out of 39 loops was optimized. Detailed results

for a two-state and two-control model with Poisson noise are reported in [9]. Very similar

techniques work for the vectorizing Cray supercomputers, except that only inner loops are

vectorized. Vectorizing and parallelizing techniques are very similar, because vectorization

is really a primitive kind of parallelization and beca.use both are inhibited by many of the

same types of data dependencies.

The relative performance of column oriented versus row oriented code is discussed in

[10]. Dongarra, Gustavson, and Karp [4] have demonstrated that loop reordering gives

vector or supervector performance for standard linear algebra loops on a Cray 1 type column

oriented FORTRAN environment with vector registers. However, for the stochastic dynamic

programming application, the dominant loops are non-standard linear algebra loops, so that

the preference for column oriented loops is not a rule, as demonstrated on the Alliant vector

multiprocessor [10].
Current efforts are concentrated on implementing the code on the Cray X-MP/48 and

Cray 2 for more general multi-state and multi-control applications. In order to implement

the code for arbitrary state space dimension, a more flexible data structure is needed for the

problem arrays, F, G and H, as well as for the solution arrays, V along with its derivatives

and the control U. In the straight-forward, original data structure, an array like the non-

linearity vector requires one index, js(is), to denote a numerical node for each state variable

is:

F(is,js(1),js(2),...,js(rn)) (2.7)

for each state equation, is = 1 to m. It is assumed that there are a common number

M = M1 ..... Mm of nodes per state, so that js(is) = 1 to M for is = 1 to m states.

As a consequence, the typically dominant loops containing the nonlinearity function F, the

solution gradient DV or similarly sized array are nested to a depth of at least m + 1. A

typical loop has the form

do li= 1, m

do 1 jl = 1, M

do 1 jrn= 1, M

1 Iz(i,jl,j2, .- .,jm) = ......

This state size dependent loop nest depth level of m + 1 inhibits the development of general

multibody algorithms, especially when the state size m is incremented and the number of

loops in each nest have to be changed. Also, vectorization is inhibited for compilers that

vectorize only the most inner loop. Parallel and vector optimization is important, due to the

size of the work load, which is O(m • Mr"), for the dominant loop illustrated above. As the
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number of states grows the computational load will grow like some multiple of

m • M TM = m • e tuba(M),

i.e., the load grows exponentially in the number of states m. This exponential growth is

merely a quantitative expression of Bellman's curse of dimensionality.

One way around this inhibiting structure (2.7) is to use a vector data structure:

FV(is,jv) (2.8)

for the nonlinearity vector as an example, such that all the numerical nodes are collected

into a single vector indexed by the global state index iv, where jv = 1 to M TM over all state

nodes. Assuming that the number of nodes per state are fixed at M, then for a fixed set of

state node indices {js(1),js(2),... ,js(m)}, the global state vector index is computed from

the direct mapping formula

jv = _-_(js(i)- 1)-M i-1 + 1, (2.9)
i=1

in the case of fixed state mesh size, Mi = M for all states i.

Both the direct mapping from the original data structure to the vector data structure

and the inverse mapping are needed to compute the amplitude functions, F, G and H, as

well as the derivatives of V*, because these quantities depend on the original formulation.

The pseudo-inverse of the vector index in (2.9) can be shown to permit the recovery of the

individual state indices by way of integer arithmetic:

js(is;jv) = 1 + [jv- 1 - _ (js(i;jv)- 1)-lv'-']llV '°-', (2.10)
i=is+l

recursively, for is = m to 1, by back substitution, with _,_+l ai =- O. The vector data

structure of (2.8) to (2.10) results in major do loop nests of the order of 1 to 2, rather than

order of m + 1. A typical vector data structure loop has the form

do 2 i = 1, m ! parallel loop•

do 2 jv = 1, M**m ! vector loop.

2 FV(i,jv) = ......

resulting in a reduction of the loop nest depth from rn + 1 to 2, independent of the number

of states m. Preliminary implementation of the vector data structure is available on the

Alliant multiprocessor and on the Cray X-MP/48.

One major disadvantage of the vector data structure given in (2.10) is that the largest

degree of paraUelism available to a parallel processor or multiprocessor in the most outer

or state number loop is m, the number of states. This task load can be better scheduled

on parallel processors by block decomposition or strip mining of the vector data structure

loop in the index iv, so that the single inner loop is split into two evenly balanced loops (cf.,

Polychronopoulos [14]). Thus, dividing the vector data structure into blocks can enhance
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parallelism. Let MBLK be the number of state nodes in each block and then the total

number of blocks will be

NBLK = Mm/MBLK,

assumed to be an integer for simplicity. Consequently, the blocked version of the typically

dominant loop will have the form

do3]= 1, m

do 3 jblk = 1, MBLK ! parallel loop.

jvl = 1 + MBLK,(jblk - 1)

jv2 = MBLK,jblk

do 3 jv = iv1, iv2 ! vector loop.

3 FVO,jv) = ......

This form should result in better parallel optimization when there are more than m available

parallel processors.

The advantages of the algorithm is that it 1) permits the treatment of general continuous

time Markov noise or deterministic problems without noise in the same code, 2) maintains

feedback control, 3) permits the cheap control limit to linear singular control to be found

from the same quadratic cost code, 4) stable mesh selection can be used to control the

number of corrector steps, and 5) produces very vectorizable and parallelizable code whose

performance is described in the next section.

3. Results and Discussion. The stochastic dynamic programming code arose from

renewable resource modeling problems of Hanson and co-worker Ryan, with various one-state,

one-control models treated in [15] and [11]: Two-state, two-control models were treated

by Hanson [8]. In the two-state model [8], the two controls represent removals from the

system by respective commercial and recreational users of the system. Poisson noise is

used to represent natural catastrophic events. Applications to aerospace problems only

entails modification of the dynamical system and performance criteria input by appropriate

aerospace input functions and parameters.

The dynamic programming code has been optimized for parallelization and vectoriza-

tion [9] using Hanson's two-state model [8] as a test example, and the Alliant FX/8 vector

multiprocessor as the advanced hardware. The Alliant FX/8 at the Advanced Computing

Research Facility (ACRF) at Argonne National Laboratory was used for benchmarking the

code. This Alliant FX/8 has eight vector computing elements (CEs). Each of the CEs has

eight vector registers whose length is 32 eight-byte elements, and the CEs are connected

to a 128 KB cache. Some automatic parallelization and vectorization is performed, but

significant increases are still attainable by the removal of optimization hindering data de-

pendencies. Benchmark performance was measured for many mesh sizes and on all processor

configurations. Almost all loops were of the highly optimized parallel and vector type for the

Alliant. Over 65% efficiency was achieved over a wide range of tests [9]. The temporal mesh

was chosen to be about four times more refined than the spatial mesh, K = 4 • (M - 1) + 1,

for a fixed number of spatial nodes M and for constant numerical stability conditions. In
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addition, vector stride effects (resonanceeffects related to multiples of the vector register
length of 32 on the FX/8) werefound with non-standardperformancein both column and
row referencingenvironments[10].

The present results have been obtained for a three-state, three-control modification
of Hanson's two-state resourcemodel [8] and by implementing the vector data structure
mentionedabove.The presentapplication containsa newinteracting state with competition.
The presentcodeis in a form where it is much moreconvenientto changethe application,
the advancedcomputer intrinsics, and the number of states.

Table 1 comparesthe performanceof the codeon the ACRF Alliant FX/8 vector multi-
processorat ArgonneNational Laboratory, the NCSA Cray X-MP/48 vector supercomputer
at Urbana, and the University of Illinois at Chicago IBM3081K as a scalar uniprocessor
reference. The Cray X-MP/48 is a four processorpipelined vector multiprocessor,but the
useof the X-MP is muchmore costly to use in parallel than the Alliant and soonly single
processorresultsarereported herefor theX-MP. The Crayexecutingon onevector processor
outperforms the Alliant using either one vector processor or the full eight vector processors,

due to the more powerful pipelined processing unit on the Cray. The advantages of block de-

composition with MBLK = 32 for eight Alliant processors are illustrated in the table, where

the eight processor time has been reduced from about 52 to 33 seconds when M = 16, while

the one processor time has increased dramatically for the block method. The IBM3081K

scalar uniprocessor is much slower when M = 8 unblocked spatial nodes than any of the

Alliant or Cray values at M = 8. However, as the spatial mesh size is refined to M = 16

spatial points, with a corresponding increase in work load, the IBM3081K performs between

the one and eight processor Alliant, but still significantly below the CRAY performance.

Table 1: Comparative Performance of IBM 3081K, Alliant and Cray,
for three state model.

Nodes

state time

M K

8 29

16 61

8 29

16 61

Method IBM 3081K

vs fortran, opt(3)

p=l

Alliant FX/8

fortran -O

Cray X-MP

cft77

p=lp=l p=8

8.653 2.980

147.391 51.619

13.693 1.998

223.426 32.729

unblocked 38.513 0.144

unblocked 85.377 2.058

blocked --

blocked --

The performance of the stochastic programming code under parallel and vector oper-

ation is investigated in more detail on the ACRF Alliant FX/8, which has better parallel

capability than the Cray X-MP/48. The Cray X-MP/48 is also a vector multiprocessor, but

the multiprocessing features are not as easily accessed as on the Alliant, where paraUeliza-

tion is more transparent. In Figure 3, the blocked and unblocked code is compared on the

Alliant FX/8 with time T(p) plotted against the number of processors p. The unblocked

code runs faster as the number of processors increases from one, but then ceases to run any
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faster beyond p = 3 processors due to the fact that the maximum parallelism available is

the three iterations in the three-state outer loop. The blocked code, using a block size of

MBLK = 32 (the vector register length on the Alliant) runs faster the more processors used

out of the eight vector processors. However, the unblocked code is faster for p < 5, but

slower for p > 5. The trade-off point between the blocked and unblocked code is p = 5, with

the block overhead slowing down the code for p < 5, but the benefit of parallelism is found

for p > 5.

Figure 4 shows the speedup, S(p) = T(1)/T(I_,), versus the number of processors p.

The unblocked code clearly exhibits a speedup plateau for p >_ 3 and the unblocked code

exhibits nearly ideal speedup, S(p) _- p for all p. However, this figure illustrates the danger

of comparing speedups, because the unblocked case is better for p < 5 as demonstrated in

Figure 3. In Figure 5, the efficiency, E(p) = S(p)/p or speedup per processor, versus the

number of processors p is shown. Again, the blocked efficiency is much higher than the

unblocked efficiency, independent of the actual performance.

4. CONCLUSIONS. Stochastic dynamic programming algorithm can be optimized to

permit numerical solution of larger state space problems using vector multiprocessors. In

order to handle a large number of state variables, a large number of parallel processors

would be desirable, but Bellman's curse of dimensionality appears to very much weakened.

Parallelization, vectorization, and general supercomputing are important in the solution

of the larger problems. Robust mesh selection techniques are necessary to achieve stable

algorithms. These techniques are generally applicable to other vector and parallel computers.

The general code is valid for general Markov noise in continuous time, feedback control,

nonlinear dynamics, nonlinear control and the cheap control limit.

Future directions include applications to aerospace problems, improved development of

general code for an arbitrary number of state variables, enhanced code portability, exten-

sions to Kalman filtering for imperfect observations, and optimization for other advanced

architectures.
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Time T(p) is in seconds and p is the number of processors. Results are for m = 3 states,

M = 16 spatial nodes and K = 61 temporal nodes.
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Speedup is denoted by S(p) = T(1)/T(p) and p is the number of processors. The notation

(ideal) denotes the ideal case, S(p) = p. Results are for m = 3 states, M = 16 sprLtial nodes

and K = 61 temporal nodes.
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A Robot Arm Simulation with a Shared Memory

Multiprocessor Machine

Sung-Soo Kim and Li-Ping Chuang

The Center for Simulation and Design Optimization

The University of Iowa

Abstract

A parallel processing scheme for a single chain robot arm is presented

for high speed computation on a shared memory multiprocessor. A
recursive formulation that is derived from a virtual work form of the

d'Alembert equations of motion is utilized for robot arm dynamics. A joint

drive system that consists of a motor rotor and gears is included in the arm

dynamics model, in order to take into account gyroscopic effects due to the

spinning of the rotor. The fine grain parallelism of mechanical and control

subsystem models is exploited, based on independent computation

associated with bodies, joint drive systems, and controllers. Efficiency and

effectiveness of the parallel scheme are demonstrated through simulations

of a telerobotic manipulator arm. Two different mechanical subsystem

models, i.e., with and without gyroscopic effects, are compared, to show the

trade-off between efficiency and accuracy.
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A Unifying Framework for Rigid Multibody Dynamics and

Serial and Parallel Computational Issues

Amir Fijany and Abhinandan Jain

Jet Propulsion Laboratory/California Institute of Technology

Abstract

In this paper we present a unifying framework for various formulations

of the dynamics of open-chain rigid multibody systems and assess their

suitability for serial and parallel processing. The framework is based on

the derivation of intrinsic, i.e., coordinate=free, equations of the algorithms

which provides a suitable abstraction and permits a distinction to be made

between the computational redundancy in the intrinsic and extrinsic

equations. A set of spatial notation is used which allows the derivation of

the various algorithms in a common setting and thus clarifies the

relationships among them. The three classes of algorithms viz., O(n), O(n 2)

and O(n3) or the solution of the dynamics problem are investigated. We

begin with the derivation of O(n 3) algorithms based on the explicit

computation of the mass matrix and it provides insight into the underlying

basis of the O(n) algorithms. From a computational perspective, theoptimal

choice of a coordinate frame for the projection of the intrinsic equations is

discussed and the serial computational complexity of the different

algorithms is evaluated. The three classes of algorithms are also analyzed

for suitability for parallel processing. It is shown that the problem belongs

to the class of N C and the time and processor bounds are of O(log_(n)) and
O(n4), respectively. However, the algorithm that achieves the above bounds

is not stable. We show that the fastest stable parallel algorithm achieves a

computational complexity of O(n) with O(n 4) , respectively. However, the

algorithm that achieves the above bounds is not stable. We show that the

fastest stable parallel algorithm achieves a computational complexity of O(n)
with O(n 2) processors, and results from the parallelization of the O(n 3) serial

algorithm.
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Parallel Algorithms and Architecture for Computation of Manipulator

Forward Dynamics

Amlr Fijany and Antal K. Bejczy

Jet Propulsion Laboratory, California Institute of Technology

Abstract- In this paper parallel computation of manipulator forward dynamics

is investigated. Considering three classes of algorithms for the solution of

the problem, that is, the O(n), the O(n2), and the O(n 3) algorithms,

parallelism in the problem is analyzed. It is shown that the problem belongs

to the class of NC and that the time and processors bounds are of O(log_n) and

O(n4), respectively. However, the fastest stable parallel algorithms achieve

the computation time of O(n) and can be derived by parallelization of the

O(n 3) serial algorithms. Parallel computation of the O(n 3) algorithms requires

the development of parallel algorithms for a set of fundamentally different

problems, that is, the Newton-Euler formulation, the computation of the

inertia matrix, decomposition of the symmetric, positive definite matrix, and

the solution of triangular systems. Parallel algorithms for this set of

problems are developed which can be efficiently implemented on a unique

architecture, a triangular array of n(n+1)/2 processors with a simple

nearest-nelghbor interconnection. This architecture is particularly suitable

for VLSI and WSI implementations. The developed parallel algorithm, compared

to the best serial O(n) algorithm, achieves an asymptotic speedup of more than

two orders-of-magnitude in the computation the forward dynamics.

I. INTRODUCTION

The manipulator forward dynamics problem concerns the determination of

the motion of the mechanical system resulting from the applicatlon of a set of

joint forces�torques which Is essential for dynamic simulation. The motivation

for devising fast algorithms for forward dynamics computation stems from

applications which require extensive off-line simulation as well as

appllcations which require real-time dynamic slmulation capability. In

particular, for many anticipated space teleoperation applications, a faster-
than-real-time simulation capability will be essentla1' In fact, in the

presence of unavoldable delay in information transfer, such a capability would

a11ow a human operator to preview a number of scenarios before run-time [I].

The forward dynamics problem can be stated as follows: Given the vectors

of actual joint positions (Q) and velocities (Q), the external force (rE) and

moment (n) exerted on the End-Effector (EE), and the vector of applied joint
E
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forces/torques (_), find the vector of Joint accelerations (Q). Integrating
the vector of Joint accelerations leads to the new values for Q and Q, and the

process is then repeated for the next T. The first step in computing the

forward dynamics is to derive a linear relation (for the given manipulator

configuration described by the vector of Joint positions) between the vector

of Joint accelerations and the vector of applied inertial forces/torques.

Given the dynamic equations of motion as

A(Q)_ + C(Q,Q) + c(q) + 3t(Q)F E = T (I)

and defining the bias vector b as

b = C(Q,Q) + G(Q) + Jt(Q)F E (2)

the linear relation is derived:
@m

A(Q}Q = z-b = r (3)

where Q, Q, and Q are nxl vectors and F E, a 6xl vector, is a combined

representation of fz and n E. A(Q} is an nxn symmetric, positive definite,

inertia matrix, and J is the 6xn Jacobian matrix (t denotes matrix transpose).

The bias vector b represents the contribution due to coriolis and centrifugal
terms C(Q,Q}, gravitional terms G(Q}, and the external force and moment.

Hence, in Eq. (3), F is the nxl vector of applied inertia forces/torques. The

bias vector b can be obtained by solving the inverse dynamics problem, using

the Newton-Euler (N-E} formulation [2], while setting the vector of joint

accelerations to zero. The computation of the vectors b and F represent the

common first step in any algorithm for solving the forward dynamics problem.

The proposed algorithms for the forward dynamics problem differ in their

approaches to solving Eq. (3}, which directly affects their asymptotic

computation complexity. These algorithms can be classified as:

I} The O(n) algorithms [3]-[6] which, by taking a more explicit advantage of

the structure of problem, e.g., by using the Artlculated-Body Inertia [3]-[4]

and recursive factorization and inversion of the inertia matrix [5]-[6], solve

Eq. (3) in O(n) steps without explicit computation and inversion of the
inertia matrix.

2) The O(n 2) conjugate gradient algorithms [7, 10] which iteratively solve

Eq. (3) without explicit computation and inversion of the inertia matrix. The

conjugate gradient algorithm is guaranteed to converge to the solution in at

most n iterations which, given the O(n) computational complexity of each

iteration, leads to an overall O(n 2) computational complexity.

3) The O(n 3) algorithms [7] which solve Eq. (3) by explicit computation and

inversion of the inertia matrix, leading to an O(n 3) computational complexity.

However, any analysis of the relative efficiency of these algorithms

should be based on the realistic size of the problem, i.e., the number of

Degree-Of-Freedom (DOF), rather than the asymptotic complexity. In fact, the

comparative study in [3]-[4] shows that the O(n 3) Composite Rigid-Body

algorithm is the most efficient for n less than 12. It should be pointed out
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that efficiency of the O(n 3) and O(n 2) algorithms has been recently improved

[9]-[10]. However, despite these improvements, even the fastest O(n 3)

algorithm is far from providing the efficiency required for real-time or
faster-than-real-time simulation. This observation clearly suggests that the

exploitation of a high degree of parallelism in the computation is the key

factor in achieving the required efficiency.

The analysis of the efficiency of the different algorithms for parallel

computation is more complex than that for serial computation. In the next
section, the three classes of algorithms are analyzed based on their

efficiency for parallel computation and it is shown that the O(n 3) algorithms

are also the most efficient for parallel computation. However, parallelizatioa

of the O(n 3) algorithms represents a challenging problem since it requires the

development of parallel algorithms for computation of a set of fundamentally

different problems, i.e., the N-E formulation, the inertia matrix, the
factorization of the inertia matrix, and the solution of triangular systems.

Lee and Chang [15] were first to Investigate the computation of the

forward dynamics by parallelization of the O(n 3) algorithms. Considering an

SIHD architecture with n processors interconnected through a generalized-cube

network, a modified version of their O(log2n) algorithm in [16] and an O(n)

parallel version of the Composite Rigid-Body algorithm were developed for

computation of the N-E formulation and the inertia matrix. A parallel O(n 2)

Cholesky algorithm and the O(n) Column-Sweep algorithms were also proposed for
the factorization of the Inertia matrix and the solution of the resulting

triangular systems, leading to an O(n 2) complexity of the overall computation.

However, the main drawbacks of the proposed algorithms reside in the

complexity of the required interconnection network and the O(n a) communication

complexity which mainly results from the excessive data alignment needed for

different algorithms.

In this paper, we present a set of efficient parallel algorithms for the

computation of the forward dynamics, using the O{n 3} algorithms, which can be

implemented on a two-dimensional array of n{n+l}/2 processors with a nearest

neighbor lnterconnection. The overall of communication complexity, even with
such simple interconnection structure, is limited to O(n) and no additional

data alignment between the computation of the different algorithms is

required, which further reduces the overhead in the parallel computation.

A new algorithm for computation of the Inertia matrix is developed which,

though not efficient for serial processing, achieves the best performance for

parallel computing in terms of both computation and communication complexity

while demanding simple architectural features for its implementation. The

parallel algorithm for computing the inertia matrix achieves the time lower

bound of O(log2n)+O(1) on the processor array. Synchronous data-flow parallel

algorithms are also developed for factorization of the Inertia matrix and the

solution of the resulting triangular systems on the processor array.
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This paper is organized as follows. In Section II, parallelism and time and

processors bounds in the computation of the forward dynamics are investigated.

In Section III, parallel algorithm for computation of the inertia matrix is

developed. In Section IV, parallel computation of the bias vector and the

linear system solution are briefly discussed. Finally, some concluding remarks

are made in Section V.

II. PARALLELISM IN FORWARD DYNAMICS COMPUTATION

A. Time and Processor Bounds in the Computation

The analysis of time and processors bounds in parallel computation of a

given problem is of fundamental theoretical importance. It can determine the

inherent parallelism in the problem and the bound on the number of processors

required for exploiting maximum parallelism and achieving the time lower

bound in the computation. However, besides the theoretical importance, it can

also provide, as is the case for forward dynamics problems, useful insights

into devising more practical and efficient parallel algorithms (in the sense

of both computation time and number of processors) for the problem.

Let P denote the class of problems that can be solved sequentially in a

time bounded by a polynomial of the input size, n. Also, let NC (for "Nick's

Class" [18]) stand for the class of problems that can be solved in parallel

in a time of O(log_n), for some constant k, with a number of processors

bounded by a polynomial of n. One open question regarding the complexity of

parallel algorithms is whether P = NC, which is thought to be very unlikely

[19]. It is clear that NC _ P. For k = 1, the time of O(1og2n)+O(1) represents

the natural time lower bound in the computation. However, most of the

kinematic and dynamic problems in robotics belong to the class of NC [8].

Furthermore, it is possible to devise parallel algorithms which achieve the

time lower bound of O(log2n)+O(1) in solving these problems [8,14,16,17]. In

the following, we study the time and processors bounds in the computation of

the forward dynamics by different algorithms.

Using the N-E formulation, the bias vector can be computed in a time of

O(log2n)+O(1) with O(n) processors [15]-[16]. This implies that the time and

processors bounds in the forward dynamics computation are determined by those

in the solution of Eq. (3). Note that, with O(n) processors, the integration

of the computed joint accelerations can be performed in a time of 0(I).

The solution of Eq. (3) by the O(n) algorithms results in a set of first-

order nonlinear recurrences which can be represented (at an abstarct level) as

X I = Ci + #2(Xl÷1)/#1(X1*1) = Ci + _(Xi+l ) (4)

where C i is constant, #1 and #2 are polynomials of first and second degree,

and deg # = max (deg #1' deg #2) = 2. It is well-known that, regardless of the

number of processors, the computation of nonlinear recurrences of the form of

Eq. (4) and with deg #>I can be speeded up only by a constant factor

[20]-[21]. Thls is due to the fact that the data dependency in nonlinear
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recurrences and, particularly, those containing division, is stronger than in

linear recurrences [22]. Hence, the parallellsm in the O(n) algorlthms is

bounded, that is, their parallellzation leads to the O(n) algorithms which are
faster than the serial algorithm only by a constant factor. Note that a rather

simple model was used for presentation of the nonlinear recurrences of the

O(n) algorithms whlle they are far more complex than those usually studied
in llterature, e.g., In [21]-[22] (see [B] for a more detailed discussion).

For the conjugate gradient algorithms in [7], [10], the computation of

each iteration, as is shown in [15], can be done in a tlme of O(log2n) wlth n

processors, leading to the O(nlog2n) parallel algorithms. This implies that

the parallellsm In conjugate gradient algorithm Is unbounded. Asymptotically,
however, the parallel conjugate gradient algorithms are slower than the best

serial algorithms, the O(n) algorithms, for the solution of the problem.

The inertia matrix can be computed In O(log n)+O(1) steps with O(n 2)
processors [8], [11], [13]. The implication of this result is that it further

reduces the analysis of the time and processors bounds in the forward dynamics

problem to that in a more generic problem, the linear system solution. Csanky

has shown that the linear system can be solved in O(log_n) steps with O(n 4)

processors [23] Thls implies that the forward dynamics problem belongs to

the class of NC. Note that, using Cramer's rule, the linear system solution
can be computed In O(log n) steps wlth O(n!) processors [20]. But such a

result has neither theoretlcal nor practlcal importance.

However, Csanky's algorlthm is unpractical since, besides using too many

processors, it Is numerically unstable [25]. The best stable algorithms for

linear system solution achieve a Lime of O(n) with O(n 2) processors [24]-[25].

Hence, parallellzation of the O(n 3) algorithms results in the stable O(n)

parallel algorithms with O(n _) processors, which indicates an unbounded
parallelism.

The above analysis shows that the forward dynamics problem belongs to the

class of NC and that the best known upper bounds on the Lime and processors

are O(log_n) and O(n4), respectlvely. Practically, however, the fastest (and

stable) parallel algorithm for Its computation is of O(n). With respect to
these results the main question is, given the fact that both the serial O(n)

and O(n 3) algorithms result in the O(n) parallel algorithms, which one is more
efficient for paralIelization?

Let _In+_I denote the polynomial complexity of the serial O(n) algorithms.

There is a limlted parallelism in both coarse grain and fine grain (in

matrix-vector operation) forms in these algorithms [8]. Exploitation of this

parallellsm leads to the parallel algorithms with polynomial complexity as

a2n+_ 2 where, due to the limlted parallelism, a I is reduced to a 2 only by a

small factor. Furthermore, exploitation of both coarse and fine grain

parallelism requires additional architectural complexity. For the O(n 3)
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algorithms, the polynomial complexity of the resulting parallel O(n) algorithm

is of the form _3n+_a[logan]+_3 where _3 is smaller than _I by more than two

orders-of-magnitude. As a result, while the algorithm is asymptotically faster

than the serial O(n) algorithms and their parallel versions by a high constant

factor, it is also more efficient for small n. The price to be paid for this

efficiency, of course, is an architecture with O(n 2) processors. However, the

efficiency of the parallel algorithm and the suitability of the architecture

for VLSI and WSI implementation strongly support the choice of O(n 3)

algorithms for parallel computing.

llI. PARALLEL COMPUTATION OF INERTIA MATRIX

A. Basic Algorithms for computation of inertia matrix

From Eq. (3) the elements of the inertia matrix can be computed as

a = a = r" (5)
ij jl j

for the condition given by

= 1 and = 0 For k =1, 2 ..... n (6)
l

Two physical interpretations can be thought for the above condition, with each

interpretation leading to a distinct class of algorithms as

I) The first i-I links do not have any motion, that is, they are static, and

the accelerations and the forces/torques of the last n-i+l links result from

the unit acceleration of link i. This interpretation leads to the first class

of algorithms, designated as the class of Newton-Euler Based (NEB) algorithms,

in which the diagonal and lower off-diagonal elements of the inertia matrix

are computed. In [?] an algorithm of this class is presented, designated as

the Original NEB (ONEB) algorithm, which computes the inertia matrix by

successive applications of the N-E formulation.

2) The last n-i+l links can be considered as a single composite rigid

system, since they do not have any relative motion, which is accelerating in

space, leading to the exertion of forces and moments on the first i-I static

links. This interpretation leads to the second class of algorithms, designated

as the class of Composite-Rigid Body (CRB) algorithms, in which the diagonal

and upper off-diagonal elements of the inertia matrix are computed. In [7] an

algorithm of this class, designated as the Original CRB (OCRB) algorithm, is

presented in which the center of mass and the first and the second moment of

mass with respect to the center of mass of a set of composite systems are

computed.

The comparative study in [7] shows that the OCRB algorithm achieves a

significantly greater efficiency over the ONEB algorithm. In [8]-[9], we have

developed an algorithm, designated as the Variant of CRB (VCRB) algorithm,

which avoids the redundancies in the OCRB algorithm and represents the most

efficient algorithm (to date) for computing the inertia matrix. Note that,

however, due to the symmetry of the problem, both interpretations and hence

both classes of algorithms should lead to the same results and computational
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Fig. 1. Comparison of different algorlthms for computation of inertia matrix

efficiency. In [8]-[9], we have shown that, by introducing or reducing the

redundancy in the computation, the algorithms of the two classes can be

transformed to one another and, particularly, to the most efficient one, the

VCRB algorithm. Figure 1 shows the relative serial efficiency of and

redundancy in different algorithms.

Although the results presented in Fig. ] answer the question of the

serial efficiency of different algorithms, it does not indicate which

algorithm provides the most suitable features for parallelization. For serial

processing, removing any redundancy increases the computational efficiency.

For parallel processing, however, depending on its impact on the data

dependency in the computation, this may increase or decrease the efficiency.

The fact that arbitrary algorithms can be developed by introducing or removing

different types of redundancy in the computation represents an additional

degree-of-freedom that can be exploited to derive an algorithm which, though

perhaps not efficient for serial computing, is the most suitable for

parallelization. In [8], [12], we have shown that the NEB algorithms are more

suitable for parallel computing than the CRB algorithms. In fact, they not

only achieve a better computational complexity (in the parallel sense) but

also require a less complex communication and synchronization mechanism. This

better efficiency for parallelization mainly results from the fact that the

evaluation of the columns of the inertia matrix by the NEB algorithms is order

independent and hence can be done in parallel.

B. A Variant of Newton-Euler Based (VNEB) Algorithm

Four different types of redundancy can be recognized in the ONEB algorithm,

which can be eliminated, respectively, by [8], [9], [13]:

I) Choosing a more suitable coordinate frame for projection of the equations.

2) Optimizing the N-E formulation for the condition given by Eq. (6).

3) Using a more efficient variant of the optimized N-E formulation.

4) Introducing a two-dimensional recursion in the computation.

Note that the first redundancy resides in the extrinsic equations and

results from the choice of coordinate frame for projection of the intrinsic

equations while the second, the third, and the fourth redundancies reside in

the intrinsic equations and are inherent in the formulation. As stated before,

by removing all redundancies in the intrinsic equations, the ONEB algorithm

can be transformed to the VCRB algorithm. However, removing any type of

redundancy in the NEB algorithms, as far as the order independence property
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is preserved, will also increase the efficiency of their parallel versions.

In this regard, only the removal of the fourth redundancy, which leads to the

introduction of a two-dlmensional recursion in the computation, results In the

loss of the order independence property of the algorithm. In the following, a

Variant of the NEB algorithm, designated as the VNEB algorithm, is presented

which is developed by removing the first three redundancies.

The derivation of the Variant of N-E Based (VNEB) algorithm is fully

discussed in [8], [9], [12],[13]. Here, for the sake of completeness, a brief

description of the algorithm is given. The algorithm is presented by the
intrinsic equations. In this paper, according to the Gibbs notation, vectors
are underlined once and tensors (tensors of order 2) twice. Also, in order to

simplify and, particularly, unify the derivation of the serlal and parallel

algorithms, a set of notations, given in Table I and Fig. 3, are used. The

VNEB algorithm is then written as

For i = I, 2 ..... n

For J = I, i+l ..... n

__(j,i) = z_(i) (7)

V_'(J,I) = _V(J-l,i) + _(J,i)xP(J,J-l) = __(J,i)xP(J,l) (8)

F_(J+I,J,I) = H(J)V(J,I) + _(J,l)xH(J) (9)

N(J+I,J,I) = K(J)__(J,i) (I0)

For J = n, n-1 ..... i

F{n+l,j,l) = F(J+l,J,i) + F(n+l,J+l,l) {II)

N(n+l,J,i) = N_(J+I,J,I) + N(n+l,J+l,i) + P(J+l,J)xE(n+l,j+1,i) (12)

with E(n+1,n+1, i) = N(n+l,n+1, l) = 0

a = Z_(J). N(n+l, J+l, I ) (13)
jl

C. Parallel Algorithm for Computation of Inertia Matrix

The serial computatlonal complexity of evaluating the inertia matrix Is

of O(n2). No serial algorithm can achieve a better asymptotic complexity

since, given n inputs (joint positions), the evaluatlon of the O(n 2) outputs,

the elements of the Inertia matrix, requires O(n 2) distinct steps in the

computation. Based on the VCRB algorlthm, we have already shown that the

inertia matrix can be computed in O(log2n)+O(1) steps wlth O(n 2) processors

[8], [11]. It is interestlng to note that not only the same bounds on time and

processors can be much more easily derived by parallellzatlon of the VNEB

algorithm but also the resulting parallel algorlthm, compared to the parallel

VCRB algorithm, reduces the coefficients on the polynomial complexity.

For the implementation of the parallel algorithm achieving the time lower

bound, we consider a two-dimensional array of n(n+1)/2 processor-memory

modules represented as PR , for I = I, 2 ..... n and j = I, i+I ..... n
i]
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(Fig. 3 shows the array for n = 6). For the parallel algorithm, the equations

are projected onto the EE coordinate frame, coordinate frame n+l. An n DOF all

revolute Joints manipulator is considered for which the joint variables are

the joint angles, that is, Qj = 8]. It is assumed that the joint variables 8j

(or SOj and CO l ) and constant parameters S_j, C_j, J+IP(J+I,J), J*IH(j),

J÷_K(J), and M(J) reside in the memory of all processors of Row J. The

analysis of the mapping the algorithm onto the architecture of Fig. 3 is fully

presented in [12]. Here, due to the lack of space, we only give the a brief

description of the algorithm in terms of its computational steps and cost.

For the parallel algorithm, the ith column of the inertia matrix is

computed by the processors of the ith column of the processor array. The fact

that _(j,i) = Z{i) for j = i, i+1 ..... n, implies that global communication

of Z(i) among the processors of the ith column is required. This requirement

can be avoided by introducing two recurrences as

_(j,l) = _(J-l,i) = Z(i) (14)

P(J,I) = P(j-I,i) + P(J,J-I) (15)

Equation (14) does not need any computation while, for the parallel algorithm,

the computation of Eq. (15) is required. By computing Eqs. (14)-(15) as a set

of coupled recurrences, the terms o(j-l,i) can be considered as the data

associated with Eq. (15). Using such a scheme increases the communication

complexity of parallel evaluation of Eq. (15) but will result in the global

distribution of Z(1) among the processors of the ith column. The computation

of the parallel algorithm is then performed as follows.

Step 1:

I) Parallel compute R(j+I,J) by all processors of the jth row.

For j = I, 2 ..... n

Fori=l, 2 ..... j

PR : R(j+I,J) (16)
jl

2) Parallel compute R(n+l,J) by processors of the Ith column.

For i = 1, 2 ..... n

For j = i, i+l ..... n

For _ = 1 step 1 until [loga(n+l-j) l, Do

R(j+Zn, j) = R(n+l,j)

R(j+2 n,j) = R(n+l,j) = R(n+1,J+2 D-I)R(j+2 D-I,j)

R(J+2 D,j) = R(j+2 n,J+2D-I)R(j+2 _-1,j)

End_Do

3) Rotate R(n+1,j) by processors of Row j to the processors of Row j-1.

For j = 1, 2 ..... n

For i=1, 2 ..... j

PR : R(n+l,J+l) (18)
jl

(17)

j+2D>J+2D-Imn+l

j+2Dmn+l>j+2 D-I

n+l>j+2D>J+2 D-I
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with R(n+1,n+l) = U (Unit Matrix)

Note that, as the result of the above data transfer, both the terms R(n+l,j)

and R(n+l,j+l) reside in the memory of all the processors of the 3th row.

4) Parallel compute n÷Iz(j), n+IP(D+I,j), n÷*H(J), and n÷*K(3) by all the

processors of the jth row.

For j = I, 2 ..... n

For i = 1, 2, ..., j

n*1Za) PR : (j) = R(n+l,J)Jz(j) (19)
jl

with JZ(J) = [0 0 I]t

n÷lp(J+l.j) R(n+l J+I)J÷IP(J+I J) (20)b) PR : = , ,
ji

d S_ d Ca ]t
with J÷IP(j+I,j) = [ai i i i 1

n+1HC) PR : (j) = R(n+I,J+I)J÷IH(J) (21)
jl

n+lK(d) PR : j) = R(n+I,J+I)J+IK(J)R(j+I,n+I) (22)
Jl

Note that for the processors of the nth row Eqs. (21)-(22) do not need any

computation since the terms n÷IH(n) and n÷IK(n) are given constant parameters.

As the result of the computation of Step I, all the vectors and the tensors

are projected onto the coordinate frame n+l. In the following, the absence of

superscripts denotes that the computations are performed in this frame.

Step 2:

I) Parallel compute P(J,i) and _(j,i) by processors of the Ith column.

For i = 1, 2, ..., n

For j = i, i+I ..... n

For D = 1 step I until [log2(n+1-J) ], Do

_(j+2 _,i) = _(J-2 D,i) = Z(i)

P(j+2 _,j) = P(i,j)

P(j+Z_,j) = P(i,J) = P(i,J+Z _-I) + P(J+Z_-I,J)

p(j+2_,j) = p(j+Z_,j+2 _-I) + p(J+Z_]-1,j)

End Do

2) Parallel compute V(j,i), F(j+1,J,i), N(j+1,j,i) by processors of the ith

column.

For i = I, 2 ..... n

For J = i, I+I .... n

PR : V(j,i) = _(j,i)xPCj, l)
]i
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j+2D>j+2W-Im i

J+2Wmi>j+2 D-I (24)

i>j+2W>j+2 _-I
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PR : F(J+l,J,i) = _(J,l)xH(J) + M(J)V(J,I) (26)
jt

PR : N(J+I,J,I) = K(J)_(J,i) + H(J)x_(J,i) (27)
ji

Step 3:

1) Parallel compute F(n+l,J,l) and N(n+l,J,i) by processors of the ith column.

For I = 1, 2 ..... n

For J = i, 1+1, ..., n

For _ = I step 1 until rlogz(n+l-J) ], Do

F(J+2_,J,I) = F(n+l,J,l)

F(J+2_,J,i) = F(n+l,J,i) = F(J+2_,J+2n-t,t)+F(j+2n-t,j,i)

F(J+2n, j,l) = F(j+2@,j+2n-t,i)+F(j+2_-1,j,i)

End_Do

For n = I step I until rlog2(n+l-J) ], Do (29)

N(J+2_,J,I) = N(n+1,J,i) j+2_>j+2_-tzn+1

N(J+2_,J,t) = N(n+l,J,i) = N(n+l,j+2_-t,i)+N(j+2n-t,j,i)+

p(j+2@-t,j)xF(n+1,j+2_-t,i) j+2_zn+1>j+2 _-I"

N(J+2@,J,i) = N(j+2n, J+2n-t,l)+N(J+2n-t,j,i)+

p(j+2_-t,j)xF(j+2_,j+2_-t,i) n+1>j+2n>j+2 _-I

End_Do

(28)

j+2n>j+2n-tzn+l

j+2n>n+l>j+2 n-1

n+l>j+2n>j+2 n-t

2) Parallel compute ajl by PRjI.

For i = 1, 2 ..... n

For J = I, I+I .... n

PR : a = Z(J).N(n+I,J,I) (30)
jt ji

As stated before, the time lower bound in, as well as the computational

cost of, parallel evaluation of the inertia matrix, using the VNEB algorithm,

is determined by that of the parallel evaluation of the first column of the

inertia matrix. In other words, the computational cost of the n recurrences in

Eqs. (17), (23), (24), (28), and (29) is determined by that of the largest

ones, i.e., for i = 1, which are of size n. Furthermore, the computational

cost of all the O(n 2) terms in Eqs. (16), (19)-(22), (25)-(27), and (30) is

determined by the cost of one term since for each column n terms are computed

in parallel and the computation for n columns, as will be discussed later, is

overlapped. Let m and a denote the cost of multlpllcation and addition,

respectively. The computatlonal cost of the parallel algorithm is then
evaluated as follows:
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Step I: The cost of Eq. (16} is 4m; The cost of Eq. (17) is (27m+lSa}[log2n];

Eq. (18) represents a simple data rotation; Eq. (19) does not need any

computation; The cost of Eqs. (20), (21), and (22) is (gm+6a), (gm+6a), and

(54m+36a), respectively. The cost of this step is (27m+lga)[log2nl+(76m+48a).

Step 2: Eq. (23) does not need any computation; The cost of Eq. (24) is

{3a)Flog2n]; The cost of Eqs. (25), (26}, and (26) is (6m+3a), (9m+6a}, and

(15m+12a), respectively. The cost of this step is (3a)[log2nl+(30m+21a).

Step 3: The cost of Eqs. (28) and {29) is (3a)[log2n ] and (6m+9a)Flog2n ],

respectively; The cost of Eq. (30) is (3m+2a). The cost of this step is

(6m+12a)Flog2n]+(3m+2a).

Adding the cost of Steps I-3, the computation cost of the algorithm is

obtained as (33m+33a)Flog2n]+(109m+71a). As stated before, mapping the

developed parallel algorithm onto the processor array is fully presented in

[12] where it is shown that, even using a simple nearest neighbor

interconnectlon structure, a communication complexity of O(n} can be achieved.

Also, the mechanisms for global and local synchronization for the processor

array are presented. Figure 4 shows the resulting distribution of the

elements of the inertia matrix among the processors.

IV. PARALLEL COMPUTATION OF N-E FOPJ4ULATION AND SOLUTION OF LINEAR SYSTEN

As stated before, the bias vector can be computed by evaluating the N-E

formulation while setting the vector of Joint accelerations to zero. We use

the parallel algorithm presented in [15] for computing the bias vector. This

computation is performed by the processors of the first column with the

equations being projected onto the frame n+l. Therefore, the results of the

computation of the first step except Eqs. (21)-{22) can be used while, similar

to the terms n÷lK(j) in Eq. (22), the terms n*lj(j), for j = 1, 2 ..... n, are

also needed to be computed by the processors of the first column. The cost of

evaluation of the vector r is then obtained as 15a[log2n]+(141m+lOla}. With

the nearest neighbor interconnection among the processors of the first column
a communication complexity of O(n} is achieved. In order to achieve the proper

sequencing of the computation of the inertia matrix, the bias vector, and the

linear system solution, a data-driven mechanism can be employed. That is, the

processors of all columns, except the processors of the first column, by

completion of the computation of their corresponding column of the inertia
matrix enter the wait state while the processors of the first column start the

computation of the bias vector and the vector r. The activity of the

processors of column 2 through column n in linear system solution is triggered

by receiving the corresponding data and by the completion of the computation
of the vector r.

Figure 4 shows the organization of the data resulting from the computation

of the inertia matrix and the vector r. Given this data organization, we have

developed synchronous data-flow parallel algorithms for the full solution of

Eq. (3), that is, for decomposition of the inertia matrix, using the square-

root-free variant of the Cholesky factorlzation, and the solution of the
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resulting lower and upper triangular linear systems, which are presented in

detail in [12]. The computation cost of the solution of Eq. (3) is obtained as

(n-1)(3m+2a)+(lm+la), where the cost of division and multiplication is taken

to be the same. A communication complexity of O(n) is also achieved.

Addlng the cost of evaluation of the inertia matrix, the bias vector and

the vector r, and the linear system solution, the computational cost of the

forward dynamics problem is obtained as (3m+2a)n+(33m+48a)rlogzn1+(238m+1?la).

The computational cost of the best serial O(n) algorithm, the Articulated-Body

algorithm [3]-[4], is evaluated as (380m+302a)n-(198m+173a) [15]. If the time

of multiplication and addition is taken to be the same, then, for n = 6, the

developed parallel algorithms achieve a speedup of 6 compared to the best

serial O(n) algorithm. Note, however, that as n increases, e.g., for redundant

manipulators, the speedup also significantly increases. To see this, let us

write the computational cost of the serial O(n) algorithm and the parallel

algorlthms as 682n+0(I) and Sn+O(logzn)+O(1) , with the time of multiplication

and addition taken to be the same. It can be seen that, asymptotically, the

parallel algorithms achieve a speedup of more than two orders-of-magnitude.

For small n, the computational cost of the parallel algorithms is dominated by

the [log2nl-dependent and constant terms on the polynomial complexity. Hence,

for small n, the computational complexity of the developed parallel algorithms

can be practically considered as O(log2n)+O(]).

V. CONCLUSION

We developed a set of parallel algorithms for computing the forward

dynamics problem. These algorithms exploit a high degree of parallelism in

the problem and achieve a significant speedup in the computation. Furthermore,

they can be efficiently implemented on a two-dimensional array of processors

with a nearest neighbor interconnection. This architecture is particularly

suitable for practical implementation using VLSI and WSI technologies. Due to

their simple architectural requirements, these algorithms, with some

modifications, can also be efficiently implemented on rather more

general-purpose architectures, e.g., a two-dlmenslonal array of Transputers.

A key factor in our approach to the parallel computation of the forward

dynamics is the minimization of the resulting overhead. The overall
communication complexity is of O(n). The overhead is further minimized since

there is no need for any data alignment between the computation of different

algorithms and the intermediate data resulting from the different algorithms

are generated and consumed within the array. Also, the final result of the

computation, that is, the vector of joint accelerations, is computed by the

processors of the first column. Therefore, they can be output using the same

channels for inputting the data to the array (Fig. 5). This is particularly

critical for VLSI and WSI Implementation since, by using only n bidirectional

Input/Output channels, the number of required pins is kept small.
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Fig. 2. Link, Frames, and Kinematic and Dynamic Parameters.

d, &aal' 1 i
Length, Distance, and Twist Angle of link i, respectively.

Position, Velocity, and Acceleration of joint i, respectively.

H(i)

J(i)

H(i)

K(i)

z(i)
P(i,j}

R(i,j)

_(i,j)

V(i,j)

F(k+l,i,j)

N(k+l,i,j)

Mass of link i.
Second moment of mass of link i about its center of mass (C).

i

First moment of mass of link i about point 0 .
i

Second moment of mass of link i about point 0 .
i

Axis of joint i

Position vector from point 0 to point 0 .
] i

A 3x3 matrix representing the orientation of coordinate frame j

with respect to coordinate frame i.

Angular acceleration of link i resulting from the unit

acceleration of joint j.

Linear acceleration of link i (point 0 ) resulting from the unit
i

acceleration of joint j.

Force exerted on point 0 due to the acceleration of links i
i

through k, i.e., the links contained between points 0 and 01 k+l'

resulting from the unit acceleration of joint j.
Moment exerted on point 0 due to the acceleration of link i

through k, resulting from the unit acceleration of joint j.

Table I. Notation used in derivation of serial and parallel algorithms
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Abstract

This paper proposes a Non-Strict computational approach for real-time robotics control com-

putations. In contrast to the traditional approach to scheduling such computations, based

strictly on task dependence relations, the proposed approach relaxes precedence constraints

and scheduling is guided instead by the relative sensitivity of the outputs with respect to the

various paths in the task graph. An example of the computation of the Inverse Dynamics of

a simple inverted pendulum is used to demonstrate the reduction in effective computational

latency through use of the Non-Strict approach. A speedup of 5 has been obtained when

the processes of the task graph are scheduled to reduce the latency along the crucial path of

the computation. While error is introduced by the relaxation of precedence constraints, the

Non-Strict approach has a smaller error than the conventional Strict approach for a wide

range of input conditions.

I. Introduction

Complex robot dynamics computations have typically been represented using directed

task precedence graphs, in order to facilitate the exploitation of parallelism in their exe-

cution [1,2,3]. The nodes of such a task graph represent computational modules, with the

directed edges imposing a strict partial order on their execution sequence. While such a

computational approach is faithfully accurate to the underlying physical model of the robot

system if executed instantaneously, in practice the computational latency can be significant

even with state-of-the-art computers. The use of pipelining also does not reduce this latency,

even though it increases computational throughput.

The Non-Strict computational approach is motivated by a need to reduce the "effective

latency" from input to output for complex robotics computations. The terms Strict and

Non-Strict are derived from the manner in which precedence is treated in scheduling the

tasks of a task graph such as the one shown in Fig. 1. The approach proposed here has the
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same motivation as the "Imprecise Results" approach recently proposed in [4], but uses a

different model. The key concept behind our Non-Strict approach is that of relaxing the strict

precedence constraints imposed by a conventional task-graph model, to facilitate trading off

accuracy for timeliness in real-time computation over sampled, continuously varying inputs.

Rather than sample all inputs simultaneously and then schedule tasks in strict adherence

to the precedence constraints dictated by the edges of the task graph, tasks are scheduled

so as to minimize delay between input and output along paths in the task graph that most

strongly affect the output, perhaps using some previously computed values along less crucial

paths.

Consider the task graph shown in Fig. 1. The circles represent computational tasks

to be performed and the arcs represent data flow and thus precedence. According to the

conventional Strict model of computation, the input, _, should first be sampled. Then it

should proceed through the sequence of 1-2-3-4-5, completing the computation by furnishing

the output, r. The latency between input and output is just the total computation time; it

represents a lag in the real-time control implementation and tends to destabilize the system.

If the output of process 5 is more strongly affected by the output of process 4 and further,

if process 4 is strongly affected by the output of process 1 and only weakly dependent on

process 3, then a better schedule, which does not strictly adhere to the natural precedence

relationships, may be developed. In particular, it may be best to sample the input, compute

process 1, resample the input, compute process 4 using the last computed value of process 3,

and compute process 5 to generate the output. After process 5 is complete, then processes

2 and 3 may be scheduled which gives the following ordering on the computations 1-4-5-2-3

which does not follow strict precedence. However, if the 1-4-5 path from input to output is

the most crucial to the computation, then the effective latency has been reduced. This is

especially true if the computation times of processes 2 and 3 are long as compared to the

others.

From the above example, several important characteristics of the Non-Strict computa-

tional approach may be noted:

.

,

.

It is appropriate to the case of real-time control in which the same computation is to

be repeated over successive time samples of the inputs.

The main objective is to relax the precedence so as to reduce the effective latency from

input to output. Rather than sampling the inputs once for a computation so that the

results are strictly correct, albeit delayed, before each process which requires an input,

a fresh sample of the input is taken so that the effects of delay are minimized. Also,

computation generally proceeds along the crucial paths using the freshest (but past)

values generated by the other less crucial processes. While this is often not according

to precedence, again it can have the effect of reducing the latency.

While the Non-Strict approach does introduce error into the computation by violating

task-graph precedence constraints, and can therefore only be an approximation of the
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Figure 1: Example Task Graph to Illustrate Non-Strict Computation.

ideal output, the maximum instantaneous error and average error are often much less

when compared to that resulting from the use of a Strict approach (which produces

an output with the same shape as the ideal, but delayed in time).

4. By relaxing precedence constraints, potential parallelism may be increased. That is,

the task precedence relationships constrain the flow of computation to certain se-

quences/orderings. With these relaxed, a greater amount of parallel scheduhng of

processes may proceed.

In order to further develop the basic concepts, an example of the dynamics of a simple

inverted pendulum will be given. A description of the system, including its dynamic equation

of motion and task graph for its evaluation, will be given in the next section. Following that,

results using the Non-Strict computational approach will be given and will be compared with

the Strict approach. Finally, the paper ends with a summary of the results, and conclusions

on which to base further investigations.
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II. Simple Inverted Pendulum Example

The computation of the dynamics of the simple inverted pendulum system shown in

Fig. 2 is to be considered. The system consists of a single link which is connected through a

one-degree-of-freedom revolute joint to a fixed base. Gravity acts in the vertical direction,

and an actuator is mounted at the joint to power the pendulum movement. While the model

is quite simple, it has been used in the past to study the dynamics of biped walking in the

single support phase of locomotion [5].

The basic computational task is to solve the Inverse Dynamics problem [6] in real time.

The dynamic equation of motion for the pendulum may be written as follows:

T = I_ + B 0 -- mgl sin(q) (i)

where

T

q,q,4

I

B

m

l

= Actuator torque,

= Joint position (as referenced to the vertical),

velocity, and acceleration

-- Moment of inertia of the link about the joint axis,

-- Joint actuator damping coefficient,

= Mass of the link, and

-- Position of the center of gravity of the link

from the joint axis.

Note that values for the system parameters are also given in Fig. 2.

For Inverse Dynamics, the joint position, velocity, and acceleration are given and the

joint torque is to be computed. Inverse Dynamics is used in advanced control schemes for

robotic systems to determine the torque required for a desired motion trajectory and must

be computed at real-time rates of up to a few hundred hertz [7].

A task graph for the Inverse Dynamics computation is shown in Fig. 3. There are 6

processes with the top number in the circle giving the process number. The operation

performed is given in the middle section of the circle while the computation time is given in

the bottom part and is normalized to units of a basic computation time, A. Note that it is

assumed that adds and multiplies take a single unit of time and that the sine computation

takes ten times as long. For the purposes of this example, it is assumed that the input

position, q, is a simple sinusoid:

q(t) = sin(wt). (2)
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Figure 2: Simple Inverted Pendulum System.

Figure 3: Task Graph for Inverse Dynamics Computation.
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where_ is the frequency.

III. Computational Results

In this section, using the Inverse Dynamics of an inverted pendulum as an example,

a number of results will be given which illustrate the Non-Strict computational approach

and compare it with the Strict approach. The output of the computation under the Strict

and Non-Strict approach are contrasted for a simple sinusoidal input to the system. If the

computational delays in evaluating the component operations in the task graph were zero,

then both the Strict and Non-Strict approaches would yield identical results. With the Strict

approach, the generated output is identical in shape to the ideal output, but shifted in time

by the sum of the computational delays of the tasks in the task graph. With the Non-Strict

approach, the output (in general) approximates the shape of the ideal output but is not

identical in form. However, the overall error (including the effects of time delay) can often

be significantly less than the error with the Strict computation.

In this section, the two approaches are compared using two measures - 1) mean square

error, mid 2) effective latency. The mean square error over a period is defined as:

1]0 Imean square error T vi(t) r(t)] 2 dt
(3)

where T is the period of the input and Ti(t) is the ideal output. The effective latency At,f]

is defined in the following way:

1/0TAt,i f = At : Min _ [ri(t- At)- r(t)] 2 dt. (4)

Thus a best fit is attempted between a delayed version of the ideal output and the Non-

Strict output, and the shift in the delayed version of the ideal output is interpreted as an

effective latency of the computation. As long as the mean square error between the output

and the shifted ideal output is sufficiently small, the error in output may be related to that

arising from a time delay of the ideal output. Thus, the outputs of the Strict and Non-Strict

approaches may be compared in terms of effective computational latencies, where the scheme

with the lower effective latency is preferable.

In the following, speedup through reduction in the effective latency of the computation

will be shown. The relationship of the error in both the Strict and Non-Strict cases will

be given as a function of the input frequency. The objective is to determine a range of

frequencies for which the Non-Strict approach will give speedup while maintaining reasonable

limits on the error. Finally, the relationship between the effective latency and the input

frequency will be investigated and will provide motivation for adaptive scheduling strategies.
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Figure 4: Plot of the Torque for the Ideal, Strict, and Non-Strict Cases Over a Period

(w = 12.5 rad/s and A = _r/1500 s).

A. Reduction in the Effective Latency

Fig. 4 compares the outputs of Strict and Non-Strict evaluations of the task graph of Fig. 3

against the ideal output obtained with zero computational delay. Results for w = 12.5 rad/s

and A = lr/1500 s axe given. If the tasks are scheduled in the order 1-2-3-4-5-6 instead of

an order dictated by strict adherence to task precedence constraints, then speedup should

result by a reduction of the effective latency of the computation. In particular, at high

frequencies when the inertial term dominates the torque computation, it is anticipated that

the computational delay may be as little as 3A since this is the most crucial path in that

case. Of course, the schedule is not according to strict precedence and some amount of error
will be introduced.

Note that the Strict curve is an exact form of the ideal but delayed in time by 15A. While

the Non-Strict curve is not an exact form of the ideal, it gives the least amount of error for

almost the entire period. For the present results, little difference can be seen between the

shape of the ideal and Non-Strict curves. In fact, the Non-Strict curve does not quite read1

the desired peak and the slopes are slightly different along the trajectory. However, the

effective latency has been reduced considerably to as little as 20-30% of the Strict case.
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Figure 5: Mean Square Error for the Strict and Non-Strict Cases as a Function of the

Frequency (/k = _r/1500 s).

B. Error Vs. Frequency

If the frequency is increased such that the period is exactly 15/X, then the Strict approach

will give perfect results. The question becomes: is there a range of frequencies over which

the Non-Strict approach will give the best results (least error)? Toward this end, the error

of the Strict and Non-Strict approaches with respect to the ideal have been evaluated as a

function of the frequency. Typical results are given in Fig. 5.

The results indicate that the Non-Strict approach has a smaller error up to a frequency

of approximately w = 168 rad/s when/% = lr/1500. As might be expected, this crossover

frequency varies with the value of A chosen. As the value of/_ increases, the crossover value

of frequency decreases. In fact, as long as the value for/% is less than a certain fraction of

the period, then the Non-Strict approach will be better. For the example system, this ratio

has been determined as:

A (5)-- < O.056.
T -

For this example, if the Strict computation delay (15A) is less than approximately 80% of
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the period, then the Non-Strict approach will give better results.

C. Effective Latency Vs. Frequency

The schedule assumed for the previous results tends to work well for high input frequen-

cies, since in this region the crucial path is 1-2-3 and is scheduled first. Then for very high

frequencies, it is anticipated that the overall effective latency will be approximately 3A which

is the computational delay along this particular path. At low frequencies, the gravitational

term will dominate the inertial term. With the same schedule, then, it is anticipated that

the effective latency will be longer. In fact, the delay from the input q to the output r is

seen to be 15A. Therefore, the effective latency of the computation should be in the range

of 3 - 15A and will vary with the frequency.

Results have been obtained for the effective latency as a function of the frequency and are

shown in Fig. 6. As expected, the effective delay is 15A at low frequencies and decreases to

3A at high frequencies. The crossover takes place in the region between w = 0.1 to w = 10.0

during which the significance of the inertial, damping, and gravitational terms changes.

If operation of the inverted pendulum is at lower frequencies, then an alternate schedule

may be more appropriate. In particular, the schedule 4-5-3-1-6-2 should have an effective

latency of 12A at low frequencies - better than the previous schedule. Results for this case

are given in Fig. 7. The results are as expected. Note that the delay at high frequencies is

15A because of the long delay from sampling q"to the output. Also note that the damping
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term with _ appears to dominate at approximate w = 4 so that the effective delay is 14A.

In fact, in general, the schedule should vary depending upon the rate of change of the

inputs, and their effect on the output. For low frequencies, the path 4-5-3 should be favored

while for high frequencies, the path 1-2-3 should be favored. This gives rise to a need for an

adaptive scheduling scheme and will be considered in future investigations.

IV. Summary and Conclusions

This paper has proposed a Non-Strict computational approach attractive for real-time

applications such as robotics control. In this approach, the precedence set in a task graph

model of the computation is relaxed so as to reduce the effective latency from input to

output. This is achieved by appropriately ordering the execution of the processes so that

the m6st crucial path from input to output is given priority. While some amount of error

is introduced since the precedence relationships are not strictly adhered to, there are many

cases in which the overall error is less than that introduced by the sheer delay of the Strict

case.

The Non-Strict approach has been applied to compute Inverse Dynamics [6] for a simple

inverted pendulum. At high frequencies of motion, the effective latency was reduced from

15A to 3A, giving a speedup of 5. For a simple sinusoidal input on the joint angle, the

error for the Non-Strict case was better than the Strict case as long as the Strict compu-

tational delay was less than approximately 80% of the period. This is the case in practical
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applications. The effective latency for the Non-Strict case was shown to be a function of the

frequency of the sinusoidal input. This results from a change in the crucial path through the

task graph as the frequency varies. Two different schedules showed the range of possibilities

for reducing the effective latency and motivated the need for an adaptive scheduling scheme.

There are a number of avenues for further work which are presently being explored. First

of all, speedup has been obtained here for the case of a serial machine. The use of a Non-

Strict computational approach can clearly be expected to have an impact on exploitation of

parallelism. The strict precedence constraints imposed by a conventional task-graph model

tend to limit parallelism. The relaxation of precedence constraints with the Non-Strict

approach should thus be conducive to the better exploitation of parallelism. However, in the

parallel context, the determination of an optimal scheduling order becomes more difficult,

with the two inter-related criteria of 1) task ordering for minimization of "effective latency"

through use of a measure of "task crucialness", and 2) minimization of computational latency

through maximization of processor utilization.

A second issue is that of adaptive scheduling. Based on the rate of change of a process

output and its significance to the computation, a constantly adapting schedule should give

better results than one which is fixed. Also, processes need not be scheduled at the same

rate and such multi-rate schemes may be especially important in effectively utilizing the

resources of a parallel processor system. Further work in scheduling strategies is needed.

Another area in which the work may be extended involves the use of prediction to reduce

the effective latency and computational error. In particular, if prediction is made on the

inputs before use by a process, then it may be possible to reduce the effective process

latency and therefore the overall latency. Investigations into appropriate schemes for using

the prediction are needed.

Finally, the applicability of the Non-Strict computational approach to a wider class of

real-time control problems should be investigated. The preliminary results presented in this

paper show much promise for speedup and should be applied to other difficult real-time

computational problems.

The Non-Strict computational approach seems promising as a first step towards a frame-

work for specifying real-time robot dynamics computations in a machine-independent man-

ner. It is current practice to choose the model/algorithm with a view to what is imple-

mentable to provide real-time response when executed on a given target machine. The

flexible and adaptive scheduling of tasks inherent with the Non-Strict approach suggests

that a single algorithmic representation can be adequate for slow and fast processors alike,

for single as well as multi-processors. This seems quite feasible especially if computation-

ally inexpensive predictors/extrapolators are used as alternatives in conjunction with more

accurate but computationally demanding task blocks. A powerful target machine nfight

schedule the computationally demanding blocks every time needed and thus obtain great

accuracy, whereas a weaker target machine might schedule those computationally intensive

blocks relatively infrequently and use the predictors in between, thereby trading off accuracy
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for timeliness.

Work is currently in progressin evaluating the Non-Strict approach with more complex
robot dynamics computations, and in investigating the useof predictors and multi-rate task
schedulingstrategies. A testbed is alsounder developmenton a BBN Butterfly multiproces-
sor to investigate Non-Strict schedulingin a parallel setting. It is hoped that with further
work the Non-Strict approachcan be establishedas an effective approachfor complex real-
time domains suchas robotics control.
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Abstract

A fundamental issue which directly impacts the scalability of current

theoretical neural network models to massively parallel embodiments, in

both software as well as hardware, is the inherent and unavoidable

concurrent asynchronicity of emerging fine-grained computational

ensembles and the possible emergence of chaotic manifestations. Previous

analyses attributed dynamical instability to the topology of the

interconnection matrix, to parasitic components or to propagation delays.

However, we have observed the existence of "emergent" computational

chaos in a "concurrently asynchronous" framework, independent of the

network topology. In this paper we present a methodology enabling the

effective asynchronous operation of large-scale neural networks. Necessary

and sufficient conditions guaranteeing concurrent asynchronous

convergence are established in terms of contracting operators. Lyapunov

exponents are computed formally to characterize the underlying nonlinear

dynamics. Simulation results are presented to illustrate network

convergence to the correct results, even in the presence of "large" delays.
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Abstract

This paper presents a multi-flexible-body dynamics formulation

incorporating a recently developed theory for capturing motion induced

stiffness for an arbitrary structure undergoing large rotation and

translation accompanied by small vibrations. In essence, the method

consists of correcting prematurely linearized dynamical equations for an

arbitrary flexible body with generalized active forces due to geometric

stiffness corresponding to a system of twelve inertia forces and nine inertia

couples distributed over the body. Equations of motion are derived by
means of Kane's method. A useful feature of the formulation is its

treatment of prescribed motions and interaction forces. Results of

simulations of motions of three flexible spacecraft, involving stiffening

during spinup motion, dynamic buckling, and a repositioning maneuver,

demonstrate the validity and generality of the theory.
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ABSTRACT

This paper considers dynamics of chains of flexible bodies undergoing large rigid body
motions, but small elastic deflections. The role of nonlinear strain-displacement relations in the
development of the motion equations correct to In'st order in elastic deflections is investigated. The
general form of these equations linearized only in the small elastic deflections is presented, and the
relative significance of various nonlinear terms is studied both analytically and through the use of
numerical simulations. Numerical simulations are performed for a two link chain constrained to

move in the plane, subject to hinge torques. Each link is modeled as a thin beam. Slew maneuver
simulation results are compared for models with and without properly modeled kinematics of
deformation. The goal of this case study is to quantify the importance of the terms in the equations
of motion which arise from the inclusion of nonlinear swain-displacement relations. It is concluded
that unless the consistently linearized equations in elastic deflections and speeds are available and

necessary, the inconsistently (prematurely) linearized equations should be replaced in all cases by
"ruthlessly" linearized equations: equations in which all nonlinear terms involving the elastic
deflections and speeds are ignored.

1 INTRODUCTION

In recent years a fundamental limitation of the finite element formulation of flexible
deformations in flexible multibody simulation programs such as TREETOPS[l], DISCOS[2], etc.
has been pointed out [3,4,5]. This limitation could be characterized as a premature linearization of
velocity expressions that is implicit in a linear finite element or modal formulation of the motion
equations for flexible bodies [4]. Kane et al. [6] demonstrated this flaw of such an approach
numerically by simulating a simple system consisting of a flexible beam attached to a rigid base
spinning in the plane. This simulation yielded the surprising and intuitively wrong result of the beam
diverging during a spin up maneuver [3]. Probably because of this simple example the "prematurely
linearized" equations of motion are said to lack the "spin-stiffening effect." Further study of this
simple system showed that this limitation of the traditional approach does not significantly affect
simulation results for some maneuvers typical of space dynamical systems, such as repositioning
slewing maneuvers and station keeping [4].

This paper presents a general discussion of the equations of motion of a flexible multibody
system undergoing motion with large rigid body rates (not just angular velocities) and rigid body
configuration changes, but with infinitesimal elastic deformations. The generic equations of motion
for such systems are presented; linearized only in elastic deformation amplitudes. The implicit
assumption here is that this is a useful set of motion equations: nonlinear in rigid body rates and
coordinates but linear in flexible coordinates and rates. Some of the terms in these motion equations
cannot be obtained with linear kinematics of elastic deformation (i.e., the traditional linear finite

element or modal formulation). This paper illuminates the form of these practically unobtainable (in
the general case) terms, evaluates their relative importance and examines the possible consistent
simplifications of the motion equations.
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The practical impact of these simplifications is investigated with the use of two case studies.
The consistent equations of motion, derived with nonlinear strain-displacement relations, are

explicitly given for two systems: 1) a single Bernoulli-Euler beam cantilevered to a rigid base
undergoing large rigid body, but small flexible motions in the plane; and, 2) a two-link, revolute,
planar, flexible manipulator consisting of three rigid bodies (shoulder, elbow and end effector)
connected by two Bemoulli-Euler beams. These two examples will serve to emphasize the .general
discussion and to quantify the magnitudes of the neglected and retained terms in the equations of
motion. This will be done both analytically and through comparison of simulation results.

Before proceeding to a more general discussion of the "correct" linearized equations of
motion, a brief explanation of how these equations are obtained through proper linearization, and of
the role of nonlinear strain-displacement relations is in order.

2 NONLINEAR STRAIN-DISPLACEMENT AND PROPER LINEARIZATION

The problem that concerns us is that of obtaining the correctly linearized equations of motion
for an important class of systems which exhibit large rigid body motions but small elastic deflections.
By far the most common practice to date is to handle the flexibility through discretization of the
desired continuous system. This is achieved by representing the solution as a finite series of time-

dependent generalized elastic coordinates multiplied by space-dependent functions, as in an assumed
modes approach, or in a finite element formulation [7]. Whichever formulation one uses, in light of
the class of systems under study, the next step is to assume that these elastic coordinates, together
with the generalized elastic speeds, are infinitesimally small. In other words, we assume these
coordinates and speeds to be small enough so that only terms linear in them are kept in the equations
of motion, as terms of second order or higher are negligible.

Now that our goal is clearly stated, it should be an easy matter to obtain the linearized

equations of motion as long as we consistently drop all terms nonlinear in the elastic coordinates and
the corresponding generalized elastic speeds. Of course, the word "consistently" is the catch. When
do we linearize? That is to say: Does it matter at what step in our derivation of the equations of
motion we start to linearize? To answer this question we have to consider the process by which we

derive these equations.

Let us consider two of the more widely known methods to derive motion equations for

complex systems: Lagrange's equations of motion [8] and Kane's dynamical equations [9].
Lagrange's equations for a holonomic system with n generalized coordinates qk:

d ( aL)_ aL
Qk' (k : .....) (1)

L=T-V

where the Lagrangian L is a function of the system kinetic and potential energies (T and V
respectively). Qt are n generalized non-potential forces. The important thing to note is that using
this method to derive motion equations requires differentiating both the potential and kinetic energies
of the system with respect to the generalized coordinates and speeds. If these qi and ui (=dqi/dt)
were to represent our generalized elastic coordinates, we see that the above differentiations imply that
some terms linear in qi and ui in the energy expressions become terms of zeroth order in qi and ui.

More importantly, we see that terms of second order in the generalized coordinates and speeds in the
energy expressions become terms of first order in the resulting equations of motion. Clearly then in
order to obtain equations of motion correct to first order in qi and ui we need to have energy
expressions for our system that are correct to second order in these same elastic generalized
coordinates and speeds. More specifically the requirement demands in general that the expressions
for displacements and velocities used in determining potential and kinetic energies be correct to
second order in the elastic coordinates and speeds. Only by doing this can we ensure consistent
linearization.
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ui:
Kane's dynamical equations for a holonomic system of n particles with n generalized speeds

Fr + F*=O

Pi .R:
i=I

p. n p.
!

V J-- _Vr Ui +V
i=1

(r = 1, .... n)

, R*. =- m._.
1 l 1

' Ui = qi
(2)

where Fr is the generalized active force, Fr* is the generalized inertia force, Ri* is the inertia force for

particle Pi in an inertial reference frame, and eli is the velocity of this particle in the same fran_. VrPi
is the r-th partial velocity of particle Pi in the inertial frame. Using a similar argument as above, it is
easy to see that since the partial velocity has to be correct to first order in the generalized coordinates
and speeds, and again this term is obtained through differentiation of the velocity with respect to the
generalized speeds, the velocity has to be correct to second order in qi and ui until we form the partial
velocities. This is necessary if we want our equations of motion to be consistently linear in the
generalized coordinates and speeds.

3 FORM OF THE EQUATIONS OF MOTION FOR A CHAIN OF ELASTIC

BODIES

The equations of motion of an open chain of elastic bodies can be expressed quite generally

MRR (x ,q )
MER (X ,q ) Ml_ (x, q ) _1 = TC, E + LText,E J

as [10]:

[ FRfx'q 'u) t+ FE(X,q,J,U ) It= (I
(I)

where x isa vectorof rigidbody generalizedcoordinates;q is a vectorof the elasticgeneralized

coordinates;MRR, MRE, MER. MEE form the configuration-dependentmass matrix;Tc isa vectorof

controlforces(as injoint-torqueactuatorsin a manipulator); Textisa vectorof other generalized
externalforces;KEE is a constant stiffnessmatrix (seeequation (2) below) and F isa vectorof

nonlinearinertial(coriolisand centripetal)forces.

We are often interestedin the importantclassof systems for which theelasticdeformations

remain small so we can ignoreterms of second order inq and u. Strictlyspeaking thisrequiresthat

llqlland llullbe infinitesimallysmall However we know thatif,forexample, our flexiblebody is

modelled as a beam, itissufficientthattheelasticdeformationsdo not exceed one tenthof thelength

of the beam inorderto use linearBernoulli-Eulerbeam theory.At any rate,given thisassumption of

small elasticdeflections,we could expand thepreviousequationinorderto show more explicitlythe
form of thenonlinearterms:

MER (x ,q ) M/_ (x, q) _I Tc ,E xt,E

- 0 KEE[0 0 ]IX ]q + iflii(X):¢2i+._i_, y. flij(x)._ij.1n n
i =1 =1 j _i J
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1_= .2 __ n n
+

i If2ii(x)qxi + E _.f2..(X )qiiJc.i=I j_i U J

[ q)Ix"+  f3i(x)q:q- .
i= MER(X, q)

(MRR(X, q)) = m_lij(x )q, (MER( x, q)) .. = mT2ij(x )q
i/ 'J (2)

where n above is the number of rigid body coordinates; fl/j is a column matrix, but f2/j andf3i are

n+m by m matrices, where m is the number of elastic coordinates.

In light of the discussion in the previous section, we could further write:

2

f2ij(x ) = f_(i(x ) + f2ij(x )

mlij(X )= mllij(x ) + m2ijfx )

m2ij(x ) = mlo(x ) + m 2 (x )20 (3)

where the superscript 2 terms can only be obtained through the use of displacement and velocity
expressions, in the development of the equations of motion, that are accurate to second order in the
elastic generalized coordinates and speeds (q and u). This requires the use of nonlinear strain-
displacement relations [11,12], nonlinear kinematic constraints [6,4], or the use of a nonlinear
"geometric stiffening" term appended to the incorrectly linearized equations of motion [5,13].

The complexity of equations (2) and the difficulty involved in obtaining the nonlinear terms
have prompted attempts at simplification. It is common [10] for example to assume small velocities
and drop all terms nonlinear in rates. This results in rate-linear motion equations that greatly simplify
the dynamicist's task. It has been pointed out [14], however, that in the case of n-link rigid
manipulators in any configuration, the velocity and acceleration terms of the dynamic equations have
the same relative significance at any speed of movement. The fact that the omission of these terms
does not significantly affect simulation results is attributed to the fact that gravity and joint fricta_on
usually overpower inertial terms. These results have not been extended to chains of flexible bodies.
One might argue that in some limit (i.e., vanishingly small q) the equations of motion of the flexible
multibody system should reduce to those of the rigid multibody system. Then it seems that a good
case could be made for the inclusion of at least nonlinear terms in the rigid body rates in our rate-

linear equations (i.e., flij(x)), particularly considering the fact that future, fast, space manipulators
with low joint frictions are part of the class of systems under consideration.

Faced with this, we can proceed in two ways with respect to the equations of motion: we can
be consistent, or we can be selective. To be consistent requires keeping all terms of order Ilqll and Ilull

in equation (2), i.e., no simplification. We also encounter the problem that the superscript 2 terms in
equations (3) are not readily available in the general case since they depend on nonlinear elastic
theory or nonlinear kinematics of deformation for their derivation. We could just make do with the

superscript 1 terms in equations (3) (standard approach) but this would not be consistent nor

justifiable since there is no apriori reason to guarantee IIf2//111>> IIf20all, for example.

We are forced then to be selective, at least in the general case. Now we have to rely mosdy

on experience and simulation to determine which terms are important and which negli.gible under
given conditions. Using the simple example of a beam radially cantilevered to a spinning hub, an
empirical speed limit has been proposed beyond which the standard linear finite element or modal
formulations of the model give erroneous results [5]. This limit is specified as follows: the

magnitude of the spinning rate of the system has to be one order of magnitude less than the
fundamental bending frequency of the beam. We use this simulation result to claim the following:
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unless the equations of motion exact to first order in elastic generalized coordinates and speeds are
available, we arc limited to rigid body angular rates less than an order of magnitude lower than the
lowest fundamental bending frequency of our system. In view of this, we might be able to model

our system accurately enough by just keeping the rate-linear equations together with terms flij. In
other words, we might as well drop all nonlinear terms involving elastic coordinates and speeds. We
further claim that speed or acceleration limits also exist in translational rates or accelerations, arising
from those mass matrix terms that depend on q and cannot be obtained through the standard
approaches. In the next section we investigate these claims analytically and through simulation.

In what follows we shall refer to three types of models for a flexible multibody system under
study. The "consistent" model will be that which retains all terms to fast order in q and u, that is, the
consistently linearized model. The "inconsistent" model shall be that obtained through linear

kinematics of deformation, that is, one whose equations omit the superscript 2 terms mentioned
above. Finally, a "ruthlessly linearized," or simply "ruthless" model, shall be one in which the

nonlinear terms which include elastic coordinates and speeds arc ignored, including those terms in
the mass matrix which depend on elastic coordinates. In other words, in our "ruthless" model

equations we ignore terms f2ij andf3i, and we assume the mass matrix depends on rigid body
configuration only.
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Fig. 1: Single Beam Attached

to a Moving Base

Fig. 2: Fundamental Bending

Frequency of Spinning Beam vs Spin Rate

4 TWO CASE STUDIES

4.1 One flexible body example

Consider a simple, slender, uniform beam cantilevered to a rigid body free to move in the
plane (see Fig. 1). The frame N, defined by the unit vectors nl, n2, n3, is inertial, and we

introduce the rotating frame A defined by the unit vectors ab a2, a3, attached to body A and whose
al axis lies along the undeformed neutral axis of the beam B initially. The consistently linearized
equations of motion for this system have been derived using Kane's dynamical equations together
with nonlinear strain-displacement relations. Shear and rotary inertia effects have been ignored (i.e.,
slender beam assumption). The equations of motion, exact to f'trst-order in generalized elastic
coordinates and speeds are [15]:

234



m A + m B

0

n

-X Ei qi
i=l

n

--X llijqi
i =1

0

m A + m B

bm B + e

-XEiqi ... 0
i =1

bm B + e ... E i

b2mB + 2eb + I B +'I A ... bE i + F i ...

I .. "- .

E. bE.+ F .... G .....
J J J IJ

: • . "_ ..

n

(m A + mB)v2v3 + v2(bm a + e) +2v3EE/q;
i=l

n

-(m A + mB)v3v 1 + v2XEiqi
i=l

tl
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where following Kane et al. [16] we have defined:

' ;ox so"m B =-_oPdX, e =- pdx, IB =- x2pdx

s; ,, s),H 0 - EldP2i (x)¢2j (x)dx, Ei - 2i (x)pdx

L

Fi - _oX_21(x)odx, C,.,S-_¢_2i(x)¢2s(x)odx
0

(id =1 .... ,n)

and we have further defined:
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o
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I
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X ,..-=fo XOlo, ¢2i (a)¢'2i (cr)dadx

In deriving the above equations, we have assumed no external forces act on the beam for simplicity.
mA is the mass of the rigid body A; vl and v2 are translational speeds of body A in the directions of
al and a2 respectively; v3 is the rotational speed of body A; qi are the n generalized elastic
coordinates, where we have discretized the transverse elastic deformation of the beam using assumed
modes.

Specializing equation (1) to the prescribed motion of uniform rotation of the base,

vl = v2 = 0, v3=l'2----constant

we get:

n n

i_l Gijqi "t- _ EH + -t- -- Gij)_i = I iy l'22(b/iij Tlij i

(j = 1..... n)

=0

(2)

Note that the terms/zy and _y cannot be obtained using linear kinematics of deformation but are
obtained through the use of nonlinear strain-displacement relations. The term

_f'd2(bll_ij + Oij)

is known as the geometric stiffness matrix for this specialized rigid body motion (rotation). It is easy
to observe from just this analytical study that in the absence of these terms our equations lose

stiffness with increasing angular rates .('2,since:

= H.._K22G L ....(Jr)u ,j o= 1_El¢,_(x),/,_y(x)ax

- °2IoLo_2i(x )_2_(x)ax

We note that for a variety of mode shapes [17]:

={L, i=jO_ i#j

2 L2[--L_
Zi= rai _1 El

(3)

(4)

SO

¢o? pL - l"22pL, i = j(K)/j= O, i _ j
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and it is clear that as long as O << coi the incorrect de-stiffening effect will not be apparent. This

clearly evidences the angular speed limit mentioned at the end of the previous section. As shall be
seen, this rotational rigid body rate limit is the most restrictive on the validity of other than the
correctly linearized equations for the maneuvers considered. Figure 2 shows the first bending

eigenfrequency as a function of O, as predicted by the three modelling approaches, each using the
same assumed modes.

If we now specialize equation (1) to the prescribed motion of constant translational
acceleration:

we obtain:

dul/dt = g = constant, v2 = v3 = 0

lq n

iElc__o#i + El(.=Hij - qi = 0
(j =1, .... n) (5)

/.t_/is in this case the operative geometric stiffness matrix. Now we can see that for g large enough,
we again obtain de-stiffening. Another way of looking at it is to realize that for g large enough the
stiffness matrix becomes non-positive definite which implies that the beam buckles due to its own

weight. The predicted buckling is correct, and would have been lost with the inconsistently or the
ruthlessly linearized approaches. This suggests that a translational rate or acceleration limit also

exists l_eyond which our model is again grossly incorrect if we do not use equations exact to first
order. Inspection of equation (1) suggests that another rate limit exists, this one on the product of
rigid body rotational and translational rates, v2v3. Banerjee's recent work [13] suggests that as many
as 12 such independent limits on rigid body motion exist and must be considered for general three-
dimensional motion. It is doubtful that for typical stop-to stop slew and repositioning maneuvers
these limits become operative, since the magnitude of the applied forces is limited by the requirement
that the flexible body not deform excessively. This anticipation motivates the case study of the next
section.

4.2 Two-link flexible arm example

Consider a two-link flexible, revolute arm composed of three rigid bodies connected by two
slender uniform beams (see Fig. 3). The equations of motion for this system were derived using
Kane's dynamical equations together with nonlinear strain-displacement relations. The equations are
thus exact to first order in the beams' elastic generalized coordinates and speeds. We ignore
independent axial extensions of the beams (i.e., the axial strain at the neutral axis is assumed zero for
each beam). The elbow joint is actually modelled as two bodies: one attached to link 1 in a
cantilevered way and the other, free to rotate with respect to the first, with link 2 attached to it in a
cantilevered way also. Both elbow bodies are rigid and share the hinge point but their mass centers
are allowed to be offset from the hinge point. As in the previous examples, the continuous

transverse displacements of the beams are discretized using an assumed modes approach. One
percent modal damping is added to the model to represent structural damping. Actuation is assumed

in the form of shoulder and elbow torques. The equations of motion for this system, which are quite
extensive, are available in [12].

An examination of the equations of motion for this system makes it clear that the complexity
of the mass matrix and nonlinear inertial terms could be diminished immensely by dropping most
terms involving the generalized elastic coordinates and speeds (i.e., the "ruthless" case). It would be
advantageous to know, then, if these terms have a significant effect on the dynamics of a chain of
elastic bodies if we are limited to the low rotational speeds and translational accelerations encountered
during slew maneuvers with joint torques limited by the requirement that flexible deflections remain
small. In order to investigate this, we propose to examine the three models mentioned at the end of
section three, to note, consistent, inconsistent, and ruthless, as applied to the two link arm. The
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complexity of the motion equations precludes an analytical study akin to the one presented in the
previous section. We will therefore rely entirely on numerical simulation and compare the
performance of the three "models" of the arm when it is subjected to a smooth slew maneuver.

5 NUMERICAL SIMULATION

The motion equations for the two-link, flexible, planar manipulator, consistently linearized in
small elastic deflections and speeds, were programmed in FORTRAN and implemented in a
VAXstation 2000. The code allows for a maximum of four cantilevered modes per beam. The mass

matrix is inverted using LU decomposition and a Runge-Kutta fourth-order scheme with adaptive

time step is utilized for the time integration [18]. Energy and angular momentum checks are built into
the simulation. Table 1 shows the physical properties assumed for the arm (see also Fig. 3). These
numbers were chosen to mimic an actual experimental testbed built at Martin Marietta by Dr. Eric

Schmitz [19].

Physical Properties of Planar Manipulator with Two Flexible Links

Mass of shoulder body 0¢g) 20.0

Mass density of link 1 (kg/m) 1.33937

Mass of elbow body (kg) 14.0

Mass density of link 2 (kg/m) 0.669685

Mass of tip body (kg) 2.0

Moments of Inertia (about axis perpendicular to plane):

Shoulder body (kgm 2) 0.01

Elbow body (kgm 2) 0.03

Tip body (kgm 2) 0.01

Length of link 1 (m)

Length of link 2 (m)

0.9144

0.9144

Other lengths (see Fig. 3):

bl (m) 0.0762

b21 (m) 0.0762

b22 (m) 0.0127

bt (m) 0.0508

Table 1: Physical Properties of the Two-link Manipulator

All the trajectories presented below were run in open loop after the torques had been
computed from the inverse dynamics problem (given the desired angular trajectories) assuming rigid
links for the manipulator. For all simulation runs, only two assumed modes per link were used,

since this gave adequate results and was computationally much cheaper than running the full four
modes per link. With two modes per link, the f'urst two system vibration frequencies were obtained
to within three percent of the value obtained using four modes per link.

In the following, reference is made to time-scaled trajectories. Time-scaling of nominal

trajectories [20] is achieved by replacing time as the independent variable by the new variable

r= O_t, it>0

where tz is a constant. When a is greater than one, the trajectory is sped up, while if a is less than

one it is slowed down. From this it is apparent that rates scale like _ while accelerations, and thus

torques, scale like the square of oz. These relations are used in the following sections to select a

scaling factor that yields a desired maximum value of angular rate, or a given maximum value of

torque to obtain desired maximum link tip deflections.

5.1 A Smooth Slew Maneuver

In section 4.1 it was predicted that the more severe limit on the validity of other than

consistently lineadzed equations would be the limit on rigid body angular rates. In the case of chains
of flexible bodies, as exemplified by the two-link manipulator in this simulation, the nonlinearity

arising from dependence on configuration makes it difficult to select a "characteristic" angular rate in
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the general case. This suggests a case by case approach. Several different slews were compared in
reference [12]. We report here only one, perhaps the most interesting.

The smooth trajectory is obtained by assuming a form of the joint angular time histories of the
equivalent rigid manipulator that is quintic in time. This allows the specification of angle, angular
rate and angular acceleration at the initial and final times of the trajectories [21]. This trajectory is a
deployment maneuver. Both links undergo significant rotational motion, and the outboard link
translates. Fig. 4 shows the computed torques for the nominal trajectory.
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Fig. 4: Computed Torques for

Second Smooth Trajectory (Nm)

Figure 5 shows the nominal trajectory. In this figure, plots for both the ruthless and the
consistent models have been overlaid. The inconsistent model fails for this case. The failure is a
numerical divergence during time integration. This is perhaps related to the fact that the angular rates
for the nominal maneuver are as large as thirty percent of the "fundamental vibration frequency."
The system frequencies for the manipulator with locked joints are seen to fluctuate fi'om 3 rad/sec to
4 rad/sec for corresponding elbow relative angles of zero to 135 degrees [12]. For this reason, in the
case at hand reference is made to "one" fundamental frequency, and it is assumed that it lies in the
range specified above and is about 3.5 tad/see. For the two models shown, the agreement is again
excellent for the shoulder angle and tip deflections, with the elbow angular position being off by only
a maximum of ten percent relative error.

Convergence of all three models is achieved if the nominal maneuver is slowed down

(_=0.1685). Figure 6 shows that for this case, all three models yield identical results. This
cont-u'ms the predictions in section 4.1, and further suggests that within the limit of validity of the
inconsistent model, the ruthless is as good as the inconsistent, and actually better since it is much
easier to obtain. Note that the angular rates are well within ten percent of the fundamental.

The last case considered consists of the nominal trajectory scaled upwards in time (_--1.2).

As in the previous section, it was desired to reach the "hard" simulation limit of link tip deflections of
about ten percent of the link lengths. As Figure 7 shows, only the ruthless model did not fail under
the given speed-up of the trajectory, even though tip deflections should only be about four percent of
link lengths. This divergence is traceable to a near singularity of the mass matrix, related to the fact
that the links are modeled with distributed mass, while they are in fact nearly "massless springs."
The manipulator mass distribution is dominated by the elbow and the tip mass. Reference [12]
reports that the ratio of the largest to smallest mass matrix singular values is on the order of 106, and
that this range is configuration dependent. It is not known why this numerical ill-conditioning of the
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mass matrix appears to be exacerbated by including dependence upon elastic deformation, as in the
consistent model.

In summary, the above results again show a strong correlation between the limit of validity of
the inconsistent model and the maximum values of angular rates. In this case, however, no

"characteristic" rigid body rate is apparent. The limit at which the inconsistent model fails seems to
be even before any of the two angular rates (shoulder or elbow) reach ten percent of the fundamental
vibration frequency. A strong point can still be made, nevertheless, in that the ruthless model is as
good as the inconsistent whenever the inconsistent is valid, and more conservative since the ruthless
model does not fail. Even at high angular rates the ruthless model yields results that are

quantitatively very close to the consistent model results.

Finally, it is worth pointing out the excellent agreement in the tip. deflections for both links, in
all cases. This is probably due to the fact that the equations of mouon (see [12]) are elastically

decoupled, and, while inertially coupled, the elastic degrees of freedom mass matrix (MEE of section
3) does not depend on elastic nonlinear terms due to linearization. Also, the agreement in shoulder
angle and angular rates is remarkable. This indicates that, depending on what state variable is of
interest in a given trajectory, the ruthless model will be as good as the more cumbersome consistent
model. In all cases, the ruthless is more conservative and better conditioned than the inconsistent
model.

5.2 Other Trajectories

The above qualitative results for the smooth slew maneuver have also been conf'mned for two
other maneuvers: a smooth maneuver in which the elbow motion is kept to a minimum and the two-
link manipulator is slewed in extended configuration like a "beam"; and a time-optimal, bang-bang
control slew maneuver where joint torques were assumed limited. Details of these results, together
with an analysis of numerical considerations, can be found in [12].

6 SUMMARY AND CONCLUSIONS

Having looked into the general form of the linearized dynamics equations for chains of
flexible bodies undergoing large rigid body motions, but small elastic deflections, we concluded that
some terms cannot be obtained through the use of linear strain-displacement relations. These terms
were seen to be critical in the simple rotating beam example as they provide the geometric stiffness
terms necessary to obtain physical results. The absence of these terms in inconsistently linearized
equations limits their validity to relatively gentle rigid body motions. The fact that these terms are
unobtainable for the general case of an arbitrary flexible body led us to consider possible
simplifications of the general motion equations, consistent with such restrictions on their
applicability.

The two alternative models studied, the ruthlessly linearized model and the inconsistent

model, are subject to several limits in applicability. While the consistent model requires we keep
elastic coordinates and speeds small, the two alternative models will only be accurate if we further
maintain low rigid body angular rates. There also exists some translational acceleration or speed limit
that needs to be considered, although for the cases studied this limit was of no consequence. Within
the domain of validity of both simplified models, it appears the ruthless model yields results as
accurate as the correct consistently linearized model. In addition, preliminary results promise that the
ruthless model will result in large reductions in computational time in the simulation of large flexible
multibody systems. This coupled to the simplification of the dynamicist's task inherent in the
adoption of ruthlessly linearized models makes this option an attractive alternative.

From the above it is clear that the inconsistent model should never be used. Further, the

more cumbersome and hard to obtain consistent model should only be used when necessary (i.e.,

when the domain of validity of the simplified models is exceeded). Finally, it is our strong belief that
the ruthless model deserves widespread use.

Simulation misbehavior at certain trajectories for relatively high rigid body angular rates was
tracked down to numerical ill-conditioning of the configuration dependent mass matrix. This

problem was attributed to modelling error inherent in choosing cantilever (clamped-free) modes to
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modelthe flexible deflections of the manipulator links. In ref. [12] it is suggested that this results in
effectively modelling one (or more) massless degrees of freedom. Thus it became apparent that
physical modelling of bodies, and adequate selection of assumed modes and numerical procedures,
can be as important as sensible simplifications of the motion equations.
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Nonlinear Finite Element Formulation for the

Large Displacement Analysis in

Multibody System Dynamics

J. Rismantab-Sany

B. Chang
A. A. Shabana

Department of Mechanical Engineering

University of Illinois at Chicago

Abstract

A total Lagrangian finite element formulation for the deformable bodies

in multibody mechanical systems that undergo finite relative rotations is

developed. The deformable bodies are discretized using finite element

methods. The shape functions that are used to describe the displacement

field are required to include the rigid body modes that describe only large

translational displacements. This does not impose any limitations on the

technique because most commonly used shape functions satisfy this

requirement. The configuration of an element is defined using four sets of

coordinate systems: Body, Element, Intermediate element, Global. The

body coordinate system serves as a unique standard for the assembly of

the elements forming the deformable body. The element coordinate system

is rigidly attached to the element and therefore it translates and rotates

with the element. The intermediate element coordinate system, whose axes

are initially parallel to the element axes, has an origin which is rigidly

attached to the origin of the body coordinate system and is used to

conveniently describe the configuration of the element in undeformed state

with respect to the body coordinate system. A mixed sets of Cartesian

translational and rotational coordinates are used in order to define the

location and orientation of the deformable body coordinate system with

respect to global inertial frame of reference. The nonlinear dynamic

equations of motion developed, for deformable multibody systems that

undergo large relative displacements, are expressed in terms of a unique

set of time-used. These invariants can be generated for each finite element

prior to dynamic analysis. The invariants of the deformable body can be

obtained by assembling the invariants of the elements using a standard

finite element processor. The nonlinear formulation presented in this paper

has been implemented in the general purpose computer program DAMS

(Dynamic Analysis of Multibody Systems) that automatically constructs and

numerically solves the nonlinear equations of motion of multibody systems

consisting of interconnected rigid and deformable bodies. The linearization

used in other finite element methods (such as the updated Lagrangian

formulation) for describing the large displacements of deformable bodies is

also discussed.
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Optimum Control Forces for Multibody Systems
with Intermittent Motion

S. K. Ider* and F. M. L. Amirouche )

Department of Mechanical Engineering
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Abstract

It is common practice in the analysis of constrained multibody systems

to apply the constraints as a set of separate algebraic equations and embed

them into the governing equations for the specified time of the simulation.

However more realistic systems are those where different constraints could

be applied at different times, and hence the multibody system must be able

to accommodate for the sudden changes. If the multibody system doesn't

develop the appropriate initial conditions to satisfy the constraints

whenever they are applied, the system performance will then be hampered

and it will fail to accomplish its tasks.

If a multibody system is subjected to constraint equations that are

released and applied at different times during the motion they characterize

the so-called intermittent constraints. This paper objective is to address

the continuity of motion when a dynamical system is suddenly subjected to

constraint conditions. Motion discontinuity due to the initial constraint

violation is avoided by prior control forces that adjust the motion and yield

velocity and acceleration consistent at the point of application of the

constraint. The optimum control forces are determined for a specified

control interval. The method proposed provides an optimum adjustment of

the system's motion and assures that the stresses developed at the system

components are kept within acceptable limits. The procedures developed

will be illustrated making use of inequality constraints applied to obstacle

avoidance problems in robotics.

*PhD, Member ASME

*Assistant Professor, Member ASME, AIAA
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Development of Efficient Computer Program for Dynamic Simulation of
Telerobottc Manipulation
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Department of Mechanical Englneerlng
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College Park, MD20742

Abstract

Research in robot control has generated Interests in computattonally
efficient forms of dynamic equations for multi-body systems. For a simply
connected open-loop linkage, dynamic equations arranged in recursive form has
been found to be particularly efficient. A general computer program capable of
simulating open-loop manipulator with arbitrary number of links has been
developed based on an efficient recurstve form of Kane's dynamic equations.
Also included in the program is some of the important dynamics of the Joint
drive system, i.e., the rotational effect of the motor rotors. Further
efficiency is achieved by the use of symbolic manipulation program to generate
the Fortran simulation program tailored for a specific manipulator based on
the parameter values given. This paper describes the formulations and the
validation of the program, and it also shows some results.

Introduction

In the development of arobottc manipulator, simulation program can be an
important design tool. It can be used to support detailed mechanical design by
revealing the constraint forces and torques at different locations during
certain maneuvers. It can also be applied to test different control laws
without concerns of damaging the actual manipulators. If real time simulation
can be developed, training of telerobot operators and testing of actual
control hardware and software can become possible.

The success of a simulation in providing the useful and accurate
information depends on the model fidelity, the formulation of equations of
motion and the numerical solution of the equations. There is no such thine as
"the" simulation of a dynamical system because the fidelity of the model
determines what the results are like. There is always room for higher fidelity
and so there is no end to it. But quite often, a modest increase of model
fidelity is accompanied by a slgnlficant increase in equation complexity and
numerical difficulty, and thus computation time. To achieve reasonable
efficiency in the computation, one has to investigate the merits of different
solution algorithms, different dynamical formulations and different levels of
model fidelity. Additionally, one has to validate that the program is
correctly representing the model.

Many researchers have worked on efficient formulations of dynamic
equations for robot manlpulators[2-9]. Most of them model robot as consisting
of rigid bodies connected together with revolute or translational Joints.
Details of the joint drive systems have been mostly ignored. It is shown in

[7] that joint drive systems have potentially significant effects on robot
dynamics and hence should be included in the model. Also shown in [7] is a

procedure to obtain the dynamical equations of a robot with a speed-reductlon
drive system from the equations of a direct drive robot. This procedure will
be followed to develop a more comprehensive robot simulation program.
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It has been known [2,5,B] that the important aspect of efficient
formulations is the recurslve development of kinematic and c1_n_amlc quantities
to reduce the number of transformations amo_ vector Im_ses. It is also known

that recurslve Lagrange's formulatlon is still less efficient than the
recurslve Ne_rton-Euler's formulations. However, Newton-Euler's formulation

will not be advantageous if more complicated model of the system is analyzed.
Since the program under development is anticipated to be exq_anded for more

comprehensive modeling of manipulator systems, ]Cane's method is chosen because
of its systematic features. JLn efflclent formulation _ heen developed by
applying recurslve schemes in Kane's equations for a general manipulator

system. The forward and backward recurslons are established based on the
bounds on the summation signs in the equations.

If properly developed, it is expected that a customized simulation
program for a particular manipulator should be more efficient tl_un a general
purpose simulation program. For the development of simulation program, there
is always a trade-off between generality and efficiency. But thro_h the

applicatlon of symbolic manlpulatlon to eliminate unnecessary computations
that occur for a particular model, it is possible to improve simultaneously

the generality and the efficiency of a simulation pro&n-am. Symbolic
manipulation language biACSYbiA has been used to develop a program called bESP
(blanipulator Simulation Program) for manipulators that are made up of a sidle
chain of any number of rigid bodies connected by revolute Joints. C_ar
reduction effects of some simple joint drive systems are also efficiently
incorporated in the program following the procedure in [7].

Independent formulation and programmi_ of the system kinetic ener_ and
the system angular momentum about a l_zse-flxed point on the 1st Joint axis are
developed for validation purposes. Test cases which involve conservation of
these quantities have been selected to validate the simulation programs. The

objective of this paper is to present the formulation involved in the
development of this program. Computation efficiency and si_pnlflcance of gear
reduction effect are also to be discussed.

Mathematic Model

An open chain manipulator wlth N degrees of freedom as shown in Fig. I is
analyzed for the development of _P. F_%ch llnk is driven with a motor and a

gear reduction mechanism, an example of which is shown In Fig. 2. The Im_se is
considered fixed in the earth E (assumed to be an Inertlal reference frame). _

Couples are generated at motors thro_h electro_netlc interactions, and gear
reductions amplify the resulted moments on the llnlcs about the Joints. It is
assumed that the motor rotor and its rigidly attached Imart is the only massive
element in a joint drive system that will contribute to the mk)diflcatlons of

the equations of motion from that of a multlbody direct drive s_rstem.

The links are labeled consecutively B I to B W startlrtg from the llrd¢

connected to the base. The base is referred to as link BO. The ideal revolute

joints between links are numbered such that Joint i connects llnk B. to li_
I

Bi_ I. An orthogonal unit vector basis _,,x.Mi and _i fixed in B., is defined in

such a way that the unit vector z. (i = I ... N) is directed alo_ the axis
_1 p m

of joint i. A particular configuration called the null cortfi&nn'atlon of a
manipulator is one in which relative Joint 8_ngles between links are all equal

to zeros. The joint angles qi (i = 1..... N} are positive _d_en ri_t-handed

rotation from the null configuration about _i occurs. In this peper, the motor

driving link B i is assumed to be mounted on llnk Bi_ I _ unit vector -ie is

defined to be paralle) to the rotation axis of the motor rotor.
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Formulation of Dynamical Equation

The following presentation of the formulations will be in terms of
vectors and dFadics which are quantities independent of unit vector bases and
can be represented by column and square matrices, respectively, when expressed

in a particular basis.

Kane's dynamical equations[l] are

F + F* = 0 (r = 1 ..... N) (1)
r r

where F and F* are the generalized active and inertia forces associated with
r r

the r-th generalized speed, respectively. Since the system is holonomic, the
number of generalized speeds are equal to the number of degrees of freedom.
Here the generalized speeds are chosen to be simply the derivatives of the
generalized coordinates. Assuming that the only contributing active forces are

the motor torques Tre r, the gravitational forces and the external load on the

last link, represented by a force Fe acting through the mass center and a

torque Te_, one can write

F r = _rTr + i_ I Mi(V. • G) + V__,r" Fe + _ • Te (r = I N) (2)- --l,r -- -- --H,r -- ''" ''

where _r is the gear ratio for the r-th joint, Mi is the mass of i-th link, _G

is the gravitational acceleration vector, and V. and _. are the r-th
--1,r --1,r

of B:,_ mass center of B i, and the r-th partial a_gularpart ial velocity

velocity of B i, in E, respectively. The generalized inertia forces are due to

the inertia force and torque associated with each llnk, and they are
N N

Fr = -i_IMi(Vi-,r" -,a')-i_-1_i,r" (li._ a.+_,_.x_,_ii- w i)_ (r = I, ... ,N) (3)

where a. and _. are the acceleration of B_ and the angular acceleration of B.
--1 --I I 1^

in E, respectively, and i{ is the central inertia dysdlc of B i. Therefore,

the dynamic equations become
N N ^ A

Mi • a) + _ _ • (i- _ + _× I" _.)i-1 (_i,r --I i-I -1,r i i --I i -i

N

• F e + • T e (r : 1 ... N) (4)
= _rTr + i_I Mi(C • V. ) + V__ r _,0r ' '

- _ --1,r # -- --

From Fig. I, we can obtain the following kinematic equations.
i

= j_, _j _j (i = 1 ..... N) (S)

i

v = _ _j(z.× rc ) (i = 1 N) (S)
--! j-1 --J --ji .... '

_. = z _i (i = 1 ..... N) (7)
--I,r --r r

{
-Vi,r= (ZrX- -r,rc')_r (i = 1 ..... N) (8)

where r_. is the position vector from Qj to B. and
--Jl I

i = ( _ if i _ r (i,r = 1, ,N) (9)_r if r > I "'"

The angular and linear accelerations can be derived as
i

_i : j_1 qj _j + _-, (i = 1..... N) (I0)

|

--,a"= j-l_ _j (ZjX_ --Jr_i ) * aL_, (i = 1, ... , N) (11)



where
i

i Ed rC..

--jl i - 1 Ed

= _=_'× r_;_ + _=_×(_._,× r_,,_). j_;___jz_;×(-_ _r_j) (13)
and --jrL"1IS the position vector from Qj to Qi" A left superscript on a tlme

differentiation symbol represents the reference frame in which the

differentiation Is to be performed[l]. With equations (5-13) substituted, the
equations of motion can be rewritten as

#

i_1- Ari qi = grTr - _r (r = 1 .... ,N) (141

where

A'.= z • f . (15)
r ! -r -rl

N

_fri = j_i [ _£j ° Z__i + Mj -rjrc x (z_ix r_ijc ) ] (I > r) (16)

= z • _ (i7)
r --r --r

#

-Tr = {i_r["i(rCri x _i ) + T_]} - Te -(rCNX F e) (18)

= - c_ (;.)
^

_T_ = -_i" -¢} + _.x_,-Ii" -_i (20)

Because of symmetry, only upper trla_-q_ular terms of matrix [A' ] need to be
ri

evaluated. The followlng £ormulatlons are used to evaluate the vector quantity
£
--ri "

f__ii = I i • z_ i (I = 1 ..... N) (21)

N
^ ¢ r._ ]yI i =j_i{ _Ij + Mj[(rCjlZ_u - r---ij --,J

= --_i÷1 + _i + 2( L • r;+l)_ U - L Ei+lri(i+l)

(i = N-I ..... I) (22)
N

r L 2 r L r L ]

w (i = 1 ..... N) (23)
C

--tr" =j_i Mj rij
. w

r.. + (_i.IMj) (i = N-I 2) (24)= ri+l + Hi c r L--i_ j --i(i+l) '" "" '

The dyadic quantity _Ki Is a constant in Bi, i.e, I£ K i Is expressed in terms

o£ xi, Yi' --Izbasis, the coefficients are constants. Equations (22) and (24)

are backward recursive formulas that can be evaluated by establlshln8 the
fol lowlnE:

=_i.+..[ - ]
___i'./°. (25)

(26)

where _i BW/QN Is the Inertia dyadic o£ B N relative to QN" For the off-diasonal

terms o£ [A .] a backward recursive formula involvln8 r, t e.
rl ' " '
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Lr * i = N ..... 2) (27)f .= f_ + r_ z_ix -, ....--rl (r+l)i (r+l) x ( r.) ( r = i-1, 1

can be used with f.. being the starting vector that should have been evaluated
--1]

from equation (21).
^

For T_r, the following forward recursive formulations can be used to

evaluate the necessary quantities.

-_i = -_i-1 + qiz-i

(X' = (X'..l+ q (W.X Z_i)-i -1 i -i
^

u__i = a_i Ai c = u i- = " rii -1
• L

+ =Ai.1 r'(i.1) i

(i = 1 ..... N)

(i = 1 ..... N)

(i = ; ..... N)

(i = 1 ..... N)
where

A = _'x U + (_x U).(_ix U)=i -i = -I - =
The starting values for equations (28-30) are

_0 =0

_ =0

%=-G

The introduction of dyadic quantity _i is to reduce the overall computation by

reusing it in two equations in the remaining formulations. The dyadic obtained

by cross multiplying a vector with a unit dyadic can be represented by a
skewsymmetric square matrix when it is expressed in a particular unit vector
basis. This skew symmetric square matrix is commonly encountered when a cross
multiplication of column matrices is replaced with a matrix multiplication.

(28)

(29)

(30)

(31)

(32)

(33)

(34)

The following backward recursive formulation can be used to evaluate the

kinetic quantities T.:
--1

N

• IMj) rL + M. re..] (i = N-l, ,I) (36)Pi = I:)i*1 + _i [(j-_i+ --i(i*l) , --11 "'"
N

^ r L )x L__i + [ M. rC.. + (_i+lMj) r L ] x U-i = -Ti+l + -i(i+l Pi+l + 1 -II j --i(i÷l) --i
(i = N-1 ..... 1) (37)

where

L. = { &i" (]_i- _ (I_i:U) U}} (I = 1 .... N) (38)--I -- -- -- V

and a subscript v next to a dyadic in equation (38) denotes the vector of the
dyadic, which is formed by summing the cross products of the prefactors and
the postfactors of all the dyads in the dyadic. The reason for using the
expression in equation (38) is to reduce computation counts. In fact, L. can

--1

be expressed in a form identical to equation (20). Conversely, equation (20)
can be replaced by

-,T" = { -Ai" [_i-- _ (_i:U)_ U]}v (i = 1 ..... N) (39)

where the expression in brackets [ ] is the dyadic whose representation in a
particular unit vector basis is the inertia matrix with half its trace
subtracted from each diagonal element. The dyadic operations used above follow
the convention introduced by Gibbs[lO] in late eighteen hundreds.

are
The starting values for the recursive equations, equations (36) and (37},

P-N = MN -AN" --NNrc (40)

c e/ Te-TN = MN EwNX (_lNI Z MN) + L___-- -- (41)
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Equations (14) represent the equations of motion of a direct drive
open-chain system. The modifications to equations {14) for an open-chain
system with motors and gear reduction mechanisms shown in Fig. 2 are based on
the difference between generalized inertia forces contributing to these two
systems. They are[7]

(F;) = (F;) , + G; (r = 1..... N) (42)

where subscript s represents a manipulator system S which has a motor and gear
reduction mechanism in each llnk similar to that shown in Fig. 2, while
subscript s' represents the manipulator system S' which has the same mass and
inertia distribution as system S, but the motor rotors and gear reduction
mechanisms are considered to be fixed in the links on which they are mounted.
Here and throughout this paper, the motor driving i-th Joint is assumed to be

mounted on llnk B{.I (i=l ..... N). System S', therefore, represents a direct-

drlve system. The difference terms between these two systems are

0 (r> i)Gr" = N -_rJr(_rqr + _r-1" _r ) ( r = I ) (43)

i_r÷,-_iJi[(_r" _i)_i- _i(_i.lx _). _i] ( r < I )

With the additional terms added, the dynamic equations for S become
N

- T + C (r = 1, ,N) (44)i_I At{ q{ = _rTr r r "'"

where

A .= A' + _ _+Ji(_r'_1) (If r _ I ) (4S)

r, r{ [ _J. (if r = i )
I!

N

Gr = - grJr _;-l"_r + {_r+l "+Jiqi(_i-1 x £r)'_i (46)

It can be noticed that matrix [Ari] is still symmetric. Hence, only those

difference terms in the upper triangle of matrix [A .] need to be evaluated.
r!

Symbolic Manipulation

Direct numerical approach in evaluating the above equations can be
inefficient if there are terms involving multiplication with 0 or 1, or
addition with O. The use of multi-dimensional arrays in a general purpose
program further reduces the computational efficiency. These are some of the
reasons why a general simulation program cannot achieve the highest possible
efficiency. Symbolic language such as MACSYMA can be applied to eliminate
these inefficiencies. Theoretically, one can use MACSYMA to derive equations
explicitly in terms of all Joint angles and their derivatives and then to
reorganize the equations for efficient computation. But for a manipulator with
high number of degrees of freedom, this requires enormous memory space and CPU
time, and cannot be optimally simplified because the simplification is limited
by the capability of MACSYMA. It has been found that the recursive formulation
as presented above is particularly advantageous because computation is already
optimized. Only simple symbolic operations need to be applied to generate the
recursive equations of motion in FORTRAN coding, and hence the computer time
required for this process is not excessively long.

Program Validation

Complete validation of a simulation program is next to impossible. But
without being subject to some forms of validation, a program cannot be
trusted. When a program is applied on a reasonably complicated system, one
cannot rely on simple statements llke "the results make sense" as validation.
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For a manipulator system with 3 or more links, intuition as to its motion when

subject to certain inputs does not work well at all. A more systematic

approach need to be adopted. This is a very important subject for the dynamic
simulation of robots, but it does not seem to attract much attention. The

approach taken by the authors was to select some conditions under which the
system will have some scalar quantities, such as energy or measure numbers of

an angular momentum vector, that are conserved throughout the motion. Since

theme exists a slight possibility that chance may cause errors not to be

detected, an independently developed program is used to evaluate the

validation quantities. Formulation of the system kinetic energy, potential

energy and the system angular momentum about a base-fixed point on the first

joint axis for validation purposes will be described next followed by the

description of test cases chosen.

The kinetic energy formulation for a direct-drlve manipulator S' is

w N

K' = !2 i_1- j_l- Ai j _i_j (47)
For a manipulator with gear reduction in its drive system, slight modification

is required. Consider two manipulator system S and S' as described before. If

they have the same motion, then the kinetic energies K and K' of systems S and

S', respectively, are related by[7]

N

1 _2j _ + PiJi_i _i-1" e ) (49)K = K' • i -i
The potential energy V of the system are due to gravity only, and it is

N
c (49)

V = -i_1Mi _ ° Eli

There is no difference between the potential enerE_y expressions for S and S'

because they have the same mass distribution. The angular momentum vector 5'

of a direct-drive manipulator S' about QI is
N

P EVP )5' : q x (rap _ (so)
J

where P is a generic partlcle in By, _.represent the summing over all the
J

particles in By, [IP is the position vector from QI to P, and mp and EVP_ are,

respectively, the mass and the velocity in E of P. Only the measure number of
H' in z direction is used in the validation process. Comparing the kinetic

energy formulation with that of H', one can obtain
N

where A1i can be found in Eq, (15) with r = I, The angular momenta H and H'

about QI of systems S and S', respectively, are related by
N

Hence, equations (48-52) provide the necessary formulas for the evaluation of
the conservation quantities.

The validation cases used are

I. Conservation of total energy, K+V :

T = 0 (r = I ..... N)
r

II. Conservation of H • _I:

a. g = O, T I = O, _I = I, _I = _1

b. g ¢ O, T 1 : O, #1 : 1, _1 : _1 = ± _/g

where g is the gravitational constant.

255



Under conditions described above, many simulation runs of manipulators
have been performed to validate the program. The results of these runs show
that numerical variations of the conservation quantities are of the order of

magnitude that is appropriately correlated to the absolute integration error
tolerances. Here integration subroutines using Adams-Bashforth-Moulton
predictor-corrector scheme and using Runge-Kutta-Verner method have been
separately applied for numerical integration.

Discussions

For a general manipulator, the total numbers of operations to obtain A .

and //rTr- T (r i = 1, N) in Eq. (14) for a direct drive manipulator are r,r _ • • • w

IIN(N-I)+I50(N-I)-I5 multiplications and 7N(N-I)+II9(N-I)-14 additions.

Table 1 lists the numbers of operations required for each of the equations in

the evaluation of matrix [A .] and T . The counting of operations follows that
r! r

presented in [6]. Notice that unit vector basis transformation has to be

performed in each recursion step. Here external force and torque applied on
the last llnk are not included. Therefore, for a general 6 llnk manipulator,
1075 multiplications and 791 additions are required. This is much lower than
the 1541 multiplications and 1196 additions needed In Method 3 of [2]. For the

six dof PUMA 600 presented in [9], Our MSP program generates FORTRAN code that
requires 351 multiplications and 281 additions to perform the computation that
takes 392 multiplications and 294 additions in [8].

Table I. Number of Operations

I equations multiplications additions
I (22) 57(N-1)-33 36(N-1}-25

(24) 8(N-1) 7(N-1)-3
(27) 11N(N-1)-8(N-1) 7N(N-1)-4(N-1)
(28) 8(N-1) 5[N-1)
(29) 10(N-1) 6(N-1)
(30) 17(N-1) 13(N-1)
(31) 6(N-1) 9(N-1)+1
(36) 17(N-1) 13(N-1)
(37) 20(N-1) 19(N-1)
(38) 15(N-1)+3 15(N-1)+1
(40) 9 6
(41) 6 5

Total 11N(N-1)+150(N-1)-15 7N(N-1}+119(N-1)-14

Adding q.z. to the right hand side of equation (29) equations (28-41)
1--1

together with equation (17) become inverse dynamic formulation for a direct
drive robot. This inverse dynamic evaluation Is similar to algorithm 3 In [6].
By applying MACSYMA to the formula, some unnecessary computations can be

removed. For instance, If N is 6, the number of computation for the
manipulator with twist angles equal to 0 ° or 90 ° is 340 multiplications and
290 additions compared to 388 multiplications and 370 additions in [6]. For

_ _ only one nonzerothe simpler manipulator with r;i and r__(i÷l) having e iement,

the numbers of computation are 245 multiplications and 204 additions compared
to 277 multiplications and 255 additions in [6]. The reductions are due to

some additional multiplications and additions wlth zero quantities that are
counted in [6] because the authors of [6] did not actually expand the
equations for the counting.

In order to glve additional indication of efficiency, the 7 link Robot
Research Corporation [11] manipulator shown in Ftg. 3 with parameters listed
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in the Appendix is considered. The numbers of operations for the system in the
form of Eq. (14) are 651 multiplications and SOS additions with effects of
motor rotors included. The numbers for direct-drive system are S48
multiplications and 439 additions. Therefore, adding the effects of motor
rotors requires 103 multiplications and 66 additions, which is about 17% of
the total computation needed for the direct-drive system.

In the interest of demonstrating the effect of motor rotors, a constant

motor torque (TI= 0.625 N-m) is applied on the first joint of the 7 link

manipulator shown in Fig. 3. Two sets of equations are solved for comparison.
Set 1 is equation (14), which represents the direct drive system S' and set 2
is equation (44), which is the complete equations of system S. The results
from set 1 are shown in Figs. 4 and S while those from set 2 are in Figs. 6
and 7. The differences of the results are so substantial that it is clear that
set 1 is not representative of the actual system.

all the additional terms due to motor rotor, the terms _Ji_i_Among

(i=l ..... N) are most significant due to the large values of gi" Another set

of equations, set 3, established by adding only 2.1. to diagonal elements
! ]

A.. of [A' .] matrix in equations (14), is also solved for comparison. A
11 rl

sinusoidal motor torque (TI= 3.125 cos 0.811t kg-m) is applied on the first

joint of the manipulator. Some of the results from set 2 are shown in Fig. 8
while the differences of the results between set 2 and set 3 are shown in

Fig. 9. It is clear that the differences are relatively small in the duration
of S seconds.

J?

J6/J7

Fig. 3. A 7 Link Manipulator
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Conclusions

The Inltlal development of an efficient simulation program for
telerobotlc manlpuIators Is described. An efficient recurslve formulation of
Kane's dynamic equations for a class of manipulators which are made up of
links connected with revolute Joints and driven by motors with reduction
mecha_nlsms is presented. The recurslons are established according to the
summation bounds in the equations. Comparison of operation counts with other

published formalisms shows advantages of the present approach. Furthermore,
effects of rotor inertia and speed reduction are included in the formulation

to yield a more faithful model of the actual system. Symbolic manipulation is
also applied to generate customized simulation program for addltlonal
improvement of the computational efficiency. Aside from the discussions on
efficiency, steps taken to validate the simulation program are presented.
Finally, simulation results show that effects of rotors in drlve system wlth
hlgh speed reduction cannot be ignored in the slmulatlon of a manipulator.
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Fig. 6, Solution of Equations Set 2
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Fig. 8. Solution of Equations Set 2
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Appendix

The parameters of a 7 link Robot Research Corporation manipulator used in the
simulation from which results are presented in this paper are in the

following.

Hass (including motor and speed reduction mechanism): (kg)

m_ss 104.2 5S.4 28.8 20.4 11.1 4.7 4.7

Moment of Inertia (including motor and speed reduction mechanism):(kg-m 2)

link 1
link 2
link 3
link 4

llnk 5
link 6
llnk 7

Ixx

2.05
0.4
0.6
0.2
0.1
0.03
O. 03

Iyy
2.05
0.4
0.8
0.2
0.1

0.03
0.03

Izz

0.7
0.3
0.2
0.2
O. 04
0.03
0.03

Speed reduction ratio, rotor inertia (including attachment) and rotor axls (in
link fixed unit vector basis):

b_Lge

link 1
link 2
link 3
link 4
link 5
llnk 6

speed ratio

160
160
200
200
200
200

160

rotor inqrtia

(k6-m')
0,003
0.003
0.0003
0.0003
0.0002
0.0002
0.0002

rotor axis

[0,0,1]
[1, o, 1]
[O,l,O]
[1, o, ol
[0,1,0]
[1,0,0]
[0,1,0]

c i=l, , 7 :Joint to mass center position vector (m) rii, ...

X Y
link 1 0 0

link 2 0 0
link 3 0 0
link 4 0 0
llnk S 0 0

llnk 6 0 0
link 7 0 0

Z
0
0
0
0
0
0
0

L , i=1,.. 6 :
Joint to joint position vector (m) ri(i.1) .,

X Y Z

link 1 0.0 0.0 0.5
link 2 0.3 0.1 0.0
link 3 0.1 0.0 0.3
link 4 0.3 -0.1 0.0
link 5 0.08 0.0 0.4
link 6 O. 19 -0.08 0.0
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Abstract

In this paper a nonlinear Lagrangian formulation for the spatial

kinematic and dynamic analysis of open chain deformable links consisting

of cylindrical joints that connects pair of flexible links is developed. The

special cases of revolute or prismatic joint can also be obtained form the

kinematic equations. The kinematic equations are described using 4x4

matrix method. The configuration of each deformable link in the open loop

kinematic chain is identified using a coupled set of relative joint variables,

costant geometric parameters, and elastic coordinates. The elastic

coordinates define the link deformation with respect to a selected joint

coordinate system that is consistent with the kinematic constraints on the

boundary of the deformable link. These coordinates can be introduced

using approximation techniques such as Rayleigh-Ritz method, finite

element technique or any other desired approach. The large relative

motion between neighboring links are defined by a set of joint coordinates

which describes the large relative translational and rotational motion

between two neighboring joint coordinate systems. The origin of these

coordinate systems are rigidly attached to the neighboring links at the joint

definition points along the axis of motion. The geometry of the deformable

links are included in the formulation by two costant parameters which

accounts for the length and twist of the deformable link in tis undeformed

state. The kinematic equations that define the global position and velocity

of an arbitrary point on a deformable link is developed in terms of the

relative joint variable, constant geometric parameters, and elastic
coordinates of deformable links. These kinematic equations are then used

to develop the energy expression of the deformable link. The nonlinear

terms that represent the dynamic coupling between the large relative

motion and the mall elastic deformations is identified and presented in

terms of a set of time-invariant quantities that depend on the assumed

displacement field and provide a systematic approach to study the spatial

dynamics of open loop kinematic chains. The system differential equations
are then developed and expressed in terms of these set of invariant

quantities using Lagrange's equation of motion.
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Abstract

The state of the art dynamic response analysis of flexible multibody

systems is currently restricted to elastic bodies with homogeneous

materials. The requirements for high speed operation has made it

necessary to use lightweight multi layered composite bodies in robotic

systems and space structure applications. Dynamic modeling and analysis

of such systems are particularly important since the effects of body

flexibility to the performance are likely to be more pronounced.

In this paper first the eight=noded isoperimetric quadrilateral element

with independent rotational and displacement degrees of freedom is

extended to laminated composite elements. The element includes an

arbitrary number of bonded layers, each of which may have a different

thickness. The transverse shear deformation which is a predominant factor

in the analysis of laminated composite structures is taken into account in

developing the stiffness and mass matrices. The corresponding 3-D mode

shapes are then incorporated to the multibody system dynamical equations.

Floating body reference frames allow the selection of different boundary

conditions, and the dynamical equations contain all the nonlinear

interactions between the rigid and elastic motion. Example simulations are

presented to illustrate the methods proposed.

*Assistant Professor, Member ASME, AIAA
)

PhD, Member ASME
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ABSTRACT

The dynamics model here is a backhoe, which is a four degree of freedom
manipulator from the dynamics standpoint. Two types of experiment are chosen that can
also be simulated by a multibody dynamics simulation program. In the experiment,
recorded were the configuration and force histories; that is, velocity and position, and force
output and differential pressure change from the hydraulic cylinder, in the time domain.

When the experimental force history is used as driving force in the simulation

model, the forward dynamics simulation produces a corresponding configuration history.
Then, the experimental configuration history is used in the inverse dynamics analysis to
generate a corresponding force history. Therefore, two sets of configuration and force
histories--one set from experiment, and the other from the simulation that is driven forward
and backward with the experimental data--are compared in the time domain. More
comparisons are made in regard to the effects of initial conditions, friction and viscous
damping.

INTRODUCTION

With recent developments in dynamic simulation software, there have been steady
improvements in analysis and design of multibody mechanical systems. The performance
of a software package has been frequently compared with that of another, but rarely with
experimental data. In this research, dynamic simulation is compared with experimental data
in time domain.

Through the dynamic simulation, the rigid-body (or flexible-body) equations of
motion generate the positions, velocities and accelerations of the components of a given
system, and the reaction forces at the system's joints. The equations of motion are usually
idealized by not including Coulomb friction and viscous damping, and by simplifying
actuating force elements. These idealizations manifest the limitations in the mathematical

modelling of a dynamic system. There are also limitations in experimentation. The

experiments provide the factual data of the actual system. But such data are not completely

reliable because of errors in measurements and subsequent data analysis and interpretation
The system chosen for the research is J.I. Case 580K backhoe. From a dynamics

standpoint, it is a manipulator of four degrees of freedom (dof) with an operator in the
loop. Three dofs are controlled by hand levers for digging, scooping up, and dumping
operations, and one dof by a pair of foot pedals for left and right swing motion. These
four dofs are individually controlled by hydraulic cylinders that comprise a complicated
ClFCUlL

APPROACHES

The approach taken here was to divide the simulation task into multibocly dynamics
and control element modeling, each of which was separately validated and then later
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combinedtogether. In this paper, only the validation of the multibody dynamics is

presented. The multibody dynamics includes the modeling of each component and its
joints, with the assumption that applied forces or torques are supplied by the control
elements. The validation of will thus enable unbiased evaluation of the multibody dynamic

simulation, without being influenced by the modeling technique of the controller, i.e., in

this case, the hydraulic cylinders and circuitry.
The verification effort started with defining a set of static and dynamic quantities

that were both measurable in the experiment and obtainable from the simulation, and that

were capable of describing the system status at any specified time. Such quantities were
identified as positions and velocities of the system components, and forces acting on the

stem's joints. In the simulation, the post-processing analysis recovered.these quan.tities
sily. In the experiment, however, each quantity, demands its own transducer with signal

conditioning and data analysis. As a result, expenments were carefully orchestrated with
the available equipments, so that the mathematical model could simulate the same operation

as in the experiment.
Although there is no established method of validating dynamic simulation in the

time domain, the strategy adopted here makes use of .the forward and.backwar, d (.inverse)

dynamic analyses, with experimentally known t_e histories ot pos.mon .aria joint rorces.
The position history that had been measured m me experiment was input into reverse
dynamic analysis, which generates a force history that would have driven the simulation
model along the input position history. Under the ideal condition such that the dynamic
simulation describes the exactly same behavior of the actual system, the two force histories

one from the experiment, the other from the inverse dynamic analysis-- should be the
same. But, in reality, there inevitably exists a discrepancy between these two. This
discrepancy is viewed as a measure of the validation. Similarly, the force history that had
been obtained in the experiment was fed into forward dynamic analysis, which generates

position history that would have been exactly the same as measured under the ideal
condition. Again this position history was compared with the experimental position

history.

EXPERIMENTS

Since the boom carries most of the load, its static and dynamic stress analysis is the

major concern in design and analysis. Once the dynamic model is validated, it should
generate reliable joint reaction forces for dynamics and stress analysis. The experimental
effort was thus concentrated on the boom and its hydraulic cylinder. The transducers were
attached to boom are a load cell that measures the boom cylinder force output, a differential

pressure transducer between the supply and drain sides of the boom cylinder, and a
position/velocity transducer for the boom cylinder piston movement. The ex.periments
were conducted by actuating the boom cylinder with various fixed configurations of the
dipper and bucket assembly. Among those various configurations, two of them were
selected for experimentation and simulation. First, the bucket and the dipper were tucked
in under the boom, as shown in Fig. 1. Second, the bucket and the dipper were stretched

out, as shown in Fig.3.
Experimental data were digitized, inspected, and recorded in the IBM PC/AT at the

experimental site. Later in the lab, the PC was connected to the local network to unload the
data to an Apollo workstation. The data were then retrieved, filtered, interpreted, and
supplied for comparisons of experimental with theoretical results in static stress analysis
and dynamic behavior, and verification of hydraulic actuator models.

Two types of experimental data are used in the dynamic simulations: force and

relative displacement histories of the boom cylinder for the forward and backward
simulation. Both quantifies were measured while the backhoe was being o.perated through

a predefined trajectory. The relative displacement was measured by a posmon transaucer
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with one end attached to the piston and the other end to the cylinder housing. The cylinder

force was measured by a load cell placed at the piston end of the cylinder.

?.,xae,rimml_l

In the first experiment, the backhoe is in folded-up configuration; that is, the dipper
and bucket cylinders are fully extended, so the dipper and bucket are tucked in under the
boom. The angle between the boom and the dipper is about 42 degrees. The only degree of
freedom allowed is the rotation around the revolute joint between the boom and the swing

tower. At the beginning of an experiment, the boom was in upright position, making an
angle of 4 degrees with the vertical (Fig. 1). The boom was slowly lowered from the
upright position until it reached 38 degrees of boom angle, then stood still a few seconds,
and was brought back up to the original position. The duration of this operation was about
30 seconds.

A typical relative cylinder displacement history measured by the position transducer
is shown in Fig. 2. Since the boom cylinder extends while the boom drops downward, the
rising trend of the displacement history should be interpreted as the downward motion of
the boom.

up and down motion
no side swing

boom angle

boom cylinder

Figure 1 Configuration of experiment I
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the boom stand still at

boom angle

I_ the Ix)Omcylinder
m cylinder is relracting

time (sec)

The motion of the backhoe can be divided into three stages

Figure 2 Position history of experiment I

Exneriment 1I

In the second experiment, the dipper and bucket cylinders were fully retracted so
that the backhoe stretched out to its longest reach (Fig. 3). The bucket initially rested on
the ground. The boom slowly lifted the bucket up until the bucket reached about 2 m above
the ground. Then it brought the bucket back to its original position. This time the whole

operation took about 8 seconds. Figure 4 shows a typical relative cylinder displacement
history measured in experiment II.

ground

Figure 3 Initial configuration of backhoe in experiment II
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I:h

the boom cylindc_
is retracting

the boom stand still

Figure 4 Position history of experiment II

the boom cylinder

is extending

time(sec)

DYNAMIC SIMULATION

The dynamic modelling of the backhoe started with a relatively simple model
including only the major components, and then added more components such as pins until
every single component was accounted for. Table 1 lists the major components and the
types of joint used in the model (also see Fig. 6). One of the most significant changes
made in model refinements is the addition of the weights of pins and hydraulic fluid. These

masses have been regarded insignificant until we found that the simulation model was
lacking in the total inertia.

these two active joints are modelled
as frictionless and no damping

this is the only joint modelled
considering friction and damping

Figure 5 Active joints of backhoe

Among the joints, three of them are active during the experimentation, the locations
of these active joints are shown in Fig. 5. There evidendy exist viscous and Coulomb

friction damping forces at these joints. Since the revolute joint between the tower and the
boom is the biggest joint among them, the complexity of the analysis is reduced by

modelling that joint as the only joint with viscous and friction damping.
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Table 1 Bodies and Joint Types

Body name Joint Type Body 1 Body 2
Boom revolute Tower Boom

Bucket revolute Di r Bucket............................ PPe......

Coupler II Of bucket I cylindrical Bucket Coupler H

..........B'6iSiii--_I_:dei------'---i_/lliidi_i_ii-------;;-------B_de_ .........l-;;--;Ti_we-i----_--il
Boom piston cylindrical I Dipper c'din_ boom

;......._iS_(_C.':¢i_-dei:i--;[--c_iindi-ic_i i [ =Bucke.tc',',linder .......... Dipper

Di per piston s'_h_cal Dipper Coupler I
Bucket cy_de r sljh-ci_ii:-_iI........[ ...........B6i_iia PistOn- -- _[ __ _B.00m .

i;-- Buck_pist_pn ..................SPh_m'._CO.................._D_ip__r_Pi.'_ston......................Di'p__.........
spherical Bucket piston Coupler I

actc3

Y

dr3

Tr3 dr4 • Sph2 dr2

actcl Trl

Cyl3
boom

dipper

Rev3

Figure 6 Joint Definition

bucket

ground

actpl
Cyl2

Rev2

Tower

Initial configurations

In the time-dornain validation, the initial conditions of the simulation must fast and

foremost equal those of the experiment. This requires static equilibrium analysis in the
simulation and accurate measurements of position and reaction forces in the experiment. In

fact, some initial configurations had to be excluded on the grounds that they were statically
indeterminate.

At the beginning of experiment I when the system is in smile equilibrium, the force
measured at that moment was used to calculate the exact initial position of the backhoe in
the experiment. The position measurements were also available from the experiment, but
were much less accurate than the force measurement, because a little error in position

measurement resulted in a huge error in the corresponding equilibrium force at the initial
configuration, which was almost vertical.

In experiment II, a different approach was taken to determine the initial
configuration. Since the initial position of the tip of bucket was precisely known, the
initial configuration was determined by using this fact. The mass center of the swing tower
is defined as the reference coordinate center of a simulation, so the vertical distance from
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thereferencecentertothegroundhasto bemeasured.This distancewasmeasuredtobe
about0.8m. Theinitial configurationof experimentII is thusobtainedbasedthis
informationandthekinematicrelationsbetweenbodiesof thebackhoemodel.

SIMULATION AND COMPARISON

In comparison with experiment I, several viscous damping ratios have been tested

in the dynamic simulations. Figure 7 shows force comparison in which viscous damping
does not play a significant role. Indeed, it was a slow operation, so the viscous damping
force was expected to be small. However, the effect of viscous damping is pronouncedly
exhibited in the displacement comparison. In Fig. 8, the viscous damping coefficients of
10 and 15 (kN/m/sec) make the simulation close to the experimental data.

In Fig. 9, the simulation with the viscous damping coefficient of 15 (kN/m/sec)
continues to move upward (actual motion downward) even when the actual system stopped
and stood still, thus exposing the absence of Coulomb friction in the simulation model.
The existence of Coulomb friction is also observed in Fig. 7. The force from the

simulation is not reduced by the amount of Coulomb friction force, whereas the applied
force has already reflected loss from Coulomb friction. Therefore, the simulation force
would be equal to the sum of the Coulomb friction and applied forces if the simulation
exactly matched with the experiment. In the first half where the friction force is in the same
direction with the applied force, the simulation force appears above the actual applied force.
In the second half where the friction force is in the opposite direction to the applied force,

the simulation force appears below the actual applied force.
In experiment II, the long stretch of the backhoe in combination with a faster

maneuver induced vibrations that are visible in Fig. 10. But the simulation shows no

vibration but follows the general trend, because the system is modelled with rigid body.
dynamics. Figure 11 shows a good agreement between the simulation and experiment in

position history.

DISCUSSION

When the experimental position history was input to inverse dynamic analysis, it
was differentiated twice to obtain velocity and acceleration. Along with this digitized

position history, however, noises and discontinuities were also differentiated twice,
thereby creating quite a few "jerks", which in turn made the simulation force fluctuate
spuriously. To correct this problem, three smooth curves of first and third order
polynomials were pieced together to approximate the experimental position history. At the
two junction points, spurious peaks are still observed in Fig. 7 and 10.

Experimental estimation of viscous and Coulomb friction damping should
accompany the analytical effort in which several dynamic simulations were performed with
different damping coefficients. These damping forces were not so significant in Fig. 7.
But their effect on the displacement is quite noticeable as shown in Fig. 8.

The validation in the time domain requires that the initial condition of the simulation
should equal that of the experiment. This requirement is most of times very difficult to

satisfy, because it involves static equilibrium analysis in the simulation and accurate
measurements of position and reactaon forces in the experiment.
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FIG. 7 EXPERIMENT I: FORCE COMPARISON
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ABSTRACT

The dynamics of vibrations in flexible structures can be conveniently modeled in terms of

frequency response models. For structural control such models capture the distributed param-

eter dynamics of the elastic structural response as an irrational transfer function. For most

flexible structures arising in aerospace applications tile irrational transfer functions which

arise are of a special class of pseudo-meromorphic functions which have only a finite num-

ber of right half plane poles. In this paper, we demonstrate computational algorithms for

design of multiloop control laws for such models based on optimal Wiener-Hopf control of

the frequency responses. Tile algorithms employ a sampled-data representation of irrational

transfer functions which is novel and particularly attractive for numerical computation. One

key algorithm for the solution of the optimal control problem is the spectral factorization of

an irrational transfer function. We highlight the basis for the spectral factorization Mgorithm

together with associated computational issues arising in optimal regulator design. We also

highlight options for implementation of wide band vibration control for flexible structures

based on the sampled-data frequency response models. A simple flexible structure control

example is considered to demonstrate the combined frequency response modeling and control

algorithms.

1 Introduction

Frequency response methods offer several advantages for modeling the dynamics of small

amplitude vibrations in flexible structures. Such models capture the distributed parameter

dynamics of the elastic structural response as an irrational transfer function from localized

actuation to localized deformation measurements. Interest in frequency response models can

arise from a desire to predict modal frequencies with increased accuracy over that obtainable

from finite element methods. The frequency domain approach is well suited to optimal control

law synthesis with specific requirements for precision vibration supression and isolation. Most

computational methods for optimal control synthesis available to design engineers focus on

the manipulation of state space models. For flexible structure control, state space models

are problematic since the question of model order required nmst be resolved as part of the

optimal control computation. This paper reports progress in the development and testing of

computational methods for design of precision control systems for mechanical structures with

1Work supported by SDIO and Air Force Wright Research and Development Center under contract F33615-
88-C-3215.
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C+

Hoo

H2

RHoo

open right half complex s-plane, _e s > 0

Hardy space of complex functions, analytic and essentially

bounded in C+

Hardy space of complex functions, f(s), analytic in C+and such

J. f_S_that; II/( )11' < for s c C+.
rational functions in Hoo

Table 1.1: Notation

elastic effects based on direct frequency response models. The frequency response models

can arise from finite element analysis, transfer function methods, wave propagation models,

and/or empirical measurements. Moreover, the computational approach offers a framework for

integration of frequency response data from various modeling approachs which offer varying

precision in different frequency bands. The current paper extends the efforts reported in [1].

We will use the following notation and conventions in this paper. The transpose of a

column vector will be denoted as tr, Tr X is the trace of the square matrix X, and j =

_Z-i-. A Laplace (resp. z) transform will normally be indicated by dependent variable; r(s)

(resp. x(z)), however, we often drop the explicit dependence where the meaning is clear

from the context. The notation u.(s) = ur(-s) will be frequently used. E{r(t)} indicates

the expectation of the random process r(t). In this work all random processes are assumed

wide sense stationary and ergodic so that expectation can be replaced with ensemble average

where convenient. The notation contained in Table 1.1 specifies the classes of transfer function

models considered at various points. A rational function has a (partial fraction) expansion

A(s) = {A(s)}+ + {A(s)}_ + {A(s)}_o where {.}+ (resp. {.}_)is analytic in 9?es > 0-the

causal part (_es < 0-the anti-causal part) and {.}oo is the part associated with poles at

infinity. Thus the operation {A(s)}+ is causal projection of the frequency response model.

In section 2 we provide an overview of frequency domain models and modern Wiener-Hopf

design of multiloop control systems. We motivate the role of frequency response modeling and

optimal control and identify critical computational steps required for the method. Section 3

discusses a new approach to the required computations for Wiener-Hopf control which extend

the algebraic constructions for rational transfer functions to certain irrational cases. We

highlight the role of coprime factorization in design of distributed systems. Section 4 considers

a simple, but nontrivial distributed parameter system design. Finally, in section 5 we discuss

new options for real time control implementation suggested by the computational approach
of section 3.

2 Optimal Control of Frequency Response Models: Wiener-Hopf

Design

Frequency domain models have been used to articulate the full range of opportunities for

feedback compensation for internal model stabilization. Algebraic constructions based on

Laplace transform models of linear, time-invariant system dynamics have been used to describe

alternatives for standard control computations and realizations for stabilizing controllers [2,
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3]. This together with Wiener-Hopf optimization provides a general approach for resolving

tradeoffs in regulator design where natural, frequency domain specifications for model-based,

control performance are available. We remark that restricting attention to rational transfer

function models in computational approachs to flexible structure control has been primarily

motivated by convenience [1]. Specific results which extend the constructions of coprime

factorization and internal stabilization to a certain class of irrational transfer functions have

been obtained [4]. In the present effort we restrict attention to transfer functions in H_,,and

merolnorphic with the exception of a small number of right half plane poles.

Optimal regulator design via Wiener-Hopf methods. Techniques for the solution of

H2 optimization problems in multiloop feedback systems have received considerable attention

in the control theory literature for a number of years. A comprehensive approach to Wiener-

Hopf design using transfer function models is given by Youla et al [5].

A general framework for resolution of tradeoffs in multiloop control design was recently

outlined by Park and Bongiorno [6]. In general, control design involves the resolution of

choices in the use of dynamic (feedback) compensation with respect to a nominal dynamic

model of the system response to an n-vector control, u and an m-vector of exogenous system

disturbances, e, as seen by p available sensors, y and _ (possibly nonmeasurable) regulated

variables. A frequency domain model for the control design problem (shown in Figure 2.1)

can be expressed using Laplace transforms as,

=
\e(s)]

= az. G., \e(s)}"
(2.1)

The control architecture is assumed to involve feedback,

= c(s)y(s). (2.2)

Then the closed loop compensation will alter the response of the system to disturbances as

seen in terms of the regulated variables as 2,

: 1Gze e

= G_,,CSGu_e + G_,e (2.3)

where the system closed loop sensitivity operator is S = [I + Gu,,C] -1.

A major consideration in the classical methods of frequency domain design is closed loop

stability. In such methods stability considerations lnust be continually evaluated (using root

locus or Nyquist plots) as performance tradeoffs are evaluated. For single loop designs of rel-

atively low order systems, classical frequency domain methods focus attention on the tradeoff

between stabihty margins and performance. The modern approach is to use optimization to

_'Suppressing dependence on the Laplace variable s.
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u G y

Figure 2.1: General Multiloop Control System Design Problem

resolve complicated engineering tradeoffs in multiloop design--subject to the constraint of

system internal stability.

The well known Youla parametrization of all stabilizing feedback controllers C which

stabilize a given plant model was orginally derived for rational matrix transfer functions

which have coprirne factorizations over the ring of polynomials in the Laplace s-variable [5].

It is now understood that the construction goes through without modification for the ring of

stable rational functions, RHoowhich includes all rational transfer functions analytic in the

closed right half plane including the point at infinity [7]. Thus under the assumption that the

plant transfer function has right and left factorizations,

G_ = ND -1 = D-[1Nt, (2.4)

coprime over RHoo, then there exist X, Y, Xt, Y_ E RHoo such that

DtXt + NtYt = I, XD + YN = I, (2.5)

and each controller, C, which obtains R = CS with R C RHoo can be parametrized by the

factorization formulae,

C = (X- KNt)-'(Y + KD_) (2.6)

= (YL ÷ KD)(Xt - KN)-' (2.7)

for some K C RHoo. The importance of this construction is that optimization procedures can

be applied directly to the choice of K G RH¢o without concern for closed loop stability. This

fact was first exploited by Youla et all5] in the description of Wiener-Hopf optimal control for

frequency response models. More recently, the parametrization has been utilized by Desoer

and his students [8].

Our concern here is with Hz optimization for a certain class of irrational transfer func-

tions which are "pseudo-meromorphic" in the sense stable coprime factorizations exist; i.e.,

the constructions in (2.4)-(2.7) obtain closed loop stability with N, D, Nt, De, X, ): X_, Y_, K E

Hoo[1, 4]. In the research reported herein we avoid algebraic constructions related to stable,

coprime factorization of irrational transfer functions as considered by Desoer [7] and instead,

focus on the development of numerical algorthims for approximating the frequency response



of the required objects. Such transfer functions can be adequately approximated over fi-

nite frequency ranges by (rather high order) rational transfer functions. Models of this type

arise in the study of vibrations of multibody systems with flexible interactions [9] and wave

propagation in flexible mechanical structures [10, 11].

PSD modeling of control processes for performance specification. A wide class of

standard control design problems including symultaneous requirements for tracking, distur-

bance rejection and accomodation, etc. can be represented in the form of the general linear,

time-invariant regulator problem of Fig. 2.1 and (2.1)-(2.2) where the objective is to choose

a controller which stabilizes the closed loop system and minimizes a performance criterion in

the form,
1

ffoo Tr[Q(s)P,(s)] ds, (2.8)J- 27rj joo

where Pz is an effective Power Spectral Density (PSD) of the regulated variables, z.

The representation of regulation performance in terms of PSD is quite practical for a va-

riety of design problems arising in multiloop systems and provides a frequency dependent

specification of control performance consistent with design requirements for vibration rejec-

tion. One can extend the significance of PSD modeling to include a wide range of practical

design considerations. The regulation PSD, Pz, can be related to modeling assumptions on

the exogenous inputs in terms of the closed loop transfer functions;

P, = [G,_,R, I] G,, P_ (a_., G,,.). (2.9)

PSD models of exogenous inputs may include deterministic transient effects together with

steady state stochastic PSD, O,; viz.,

P,(s) = A,E{e(s)e.(s)} + A2q'..(s), (2.10)

Formulation of the performance objective, J, may include real, positive, Ai, i = 1,2 which

permit scaling relative importance of steady state and transient considerations to the com-

posite performance and Q(s) is included to permit frequency weighting. PSD modeling has

recently received increased emphasis in the study of vibration control in acoustic regimes [11].

Park and Bongiorno [6] also highlight the use of PSD models for minimizing closed loop

system sensitivity to model uncertainty. Let the system model uncertainty be given as a

frequency dependent, additive perturbation, G := G+A, which can be expressed in partitioned

form as,

A.,_ A.. "

Following [6] an effective model uncertainty PSD, PA = E{AA.}, can be reflected to the

system regulated outputs, and via superposition, a composite performance objective of the

form,

1/: {Tr Q[G,,,R, I1 ds
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is obtained for optimal regulator design,wherethe systemmodel uncertainty can be obtained

commensurate with the performance specifications as an effective disturbance PSD,

[ '_uu_zu'_uz ] = (C_") Pe (G_e''_G_e , G_e.) + #P_. (2.11)

Here the partitioned terms can be expressed in terms of a priori modeling assumptions; [6]

¢_ = Gu_P_Gu_ * + p.(E{A_u(Au,).}E{Au_(Au_).}) , (2.12)

_u_ = GueP_G_,. + #(E{Au,_(Azu)'}E{A_'(A_')'}) = ¢,u*, (2.13)

¢_ = G.,P,G_,. + #(E{A_u(A,,,).}E{A_(Az_).}). (2.14)

It is by now widely recognized that frequency domain response considerations are ex-

tremely important for robust control design and that performance objectives formulated in

the frequency domain are important tools for resolving design tradeoffs of relevance to prac-

tical design problems. However, the common wisdom is that state space modeling offers the

most reliable numerical framework for the computational problems which arise in optimal

regulator design. The Wiener-Hopf approach identifies the solution for the optimal controller

in an explicit form which highlights the role of the algebraic constructions generic to stabiliza-

tion and the quantitative computations required for identifying an optimal controller. Thus

given the system architecture (2.1)-(2.2), appropriately chosen stable coprime factors for the

plant. (2.4), a nominal stabilizing controller given in terms of its coprime factors as solutions of

the Diophantine relations (2.5), and performance PSD's (2.12)-(2.14), then an optimal closed

loop system response is obtained (assuming a solution exists) by the formula,

R = DA-' ({AD-XYgt}- - {A:'D.G,,,.Q_uDt.a-_'}+) fl-'Dt. (2.15)

The explicit form given here depends on operations of causal projection and the solution of

two causal, spectral factorizations;

D.G,,,,QG,,D = i,i (2.16)

DghuuDt. = tiff. (2.17)

with A, A -1, f_, _-1 E H_. The required controller can then be obtained in the explicit form,

C = (I - RGu,,)-IR.

The computational steps required to identify candidate optimal control solutions for the

regulator problem include: 1) stable coprime factorization (as in (2.4), 2) identify candidate

solution to Diophantine relations (2.5), 3) causal spectral factorization, and 4) causal pro-

jection. We contend that such computations can be effectively supported (in finite precision

arithmetic) by obtaining state space realizations [3] only for relatively low order, rational trans-

fer functions. In the sequel, we specifically avoid such an approach since we are ultimately

concerned with the approximate solution of large (or even infinite) dimensional models.

3 Frequency Response Computations for Optimal Control.

Our approach to optimal control computation is motivated by distributed parameter models

which arise in flexible structure control. The approach we have in mind is based on sampling
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and interpolation of the frequency response models for the system. The choice of sampling and

the resulting high order, rational approximations are obtained in the context of the optimal

control problem as summarized above.

A computational approach to spectral factorization. Recall that a transfer function

H(s) C H2 N H_ has a unique spectralfactorization H(s) = F(s)F,(s) with F E H_ if:

1. H(s) = H(._); i.e., H(s)is the transform of a real-valued function h(t).

2. H(s) = H,(s); i.e., H(s) is "para-hermittian".

3. H(s) is of normal rank; i.e., full rank almost everywhere in C.

4. H(i_o) is positive, semi-definite and bounded for _o C R.

To see that causal projection is a closely related problem consider the following. If H(s) is

scalar, then with 'I'(s) = In H(s) we obtain

(I,(s): {_(s)}+ + {_(s)}_, (3.1)

= lnF(s)+lnF.(s), (3.2)

so that the causal, spectral factorization is related to causal projection via the logarithmic

transformation; F(s) = exp{ln H(s) } +.

Our goal is to obtain numerically stable approximations to these related problems for

transfer functions in H_. For application to precision control of flexible structures we require

wide band frequency domain models so that even rational approximations will be of relatively

high order. An approach to model order reduction which has recently received attention in tile

literature is based on Fourier series approximation of irrational frequency responses [12] in H_.

Our approach to computations for such models is also based on sampling and interpolation of

the spectrum, but is motivated by computational requirements for Wiener-Hopf optimization.

From the above discussion of causal projection we motivate a class of algorithms of interest

from basic properties of the Hilbert transforms applied to the frequency response q,(jw). Recall

that the Hilbert transform of a time signal f(t) is defined as a convolution; f(t) = f_ _ dr

and it's Fourier transform has the property,

{ > 0= > 0

The inverse Fourier transform of q' is -jsgn(t)_b(t) where _b(t)is the inverse Fourier transform

of ,I,(w). A consequence is that the casual projection can be obtained as

1

= +

In previous studies we reported computational algorithms for causal projection and scalar

spectral factorization by numericM evaluation of the Hilbert transform integral. Computa-

tional cost was high due to the fact that the Hilbert transform integral is convergent only in
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the Cauchy principal value sense [13]. An alternate method for causal projection attd spectral

factorization was considered in [14] based on sampling and interpolation of the system fre-

quency response. The algorithm developed in [14] employs results of Stenger [15] on nunmrical

solution of Wiener-Hopf integrals by sampling and interpolation. Details of the algorithm used

for the current studies and computer implementation are given in [14].

In the multiloop, optimal regulator design problem we require the solution of two matrix

spectral factorization problems (.analogous to the solution of control and filtering Riccati

equations for time domMn models). The computational approach exploited in the current

study is based on a Newton-Raphson iteration for the matrix causal spectral factor;

F,+_(iw) := {[F_(iw)]-lH(iw)[Fn(iw)]-_}+ F,,(iw). (3.3)

The recursion (3.3) can be replaced with a numericMly well conditioned problem by iteration

on the inverse spectral factor;

(3.4)

By initializing with F0 (an m × m diagonal matrix) with diagonal elements equal to the spectral

factors of the diagonal elements of H the second term of (3.4) remains a perturbation of the

identity (since [F,_]-' H[Fn] -1 - I _ 0) which regularizes the computations. The algorithm

used in this work is based on that reported in [14] and is a modified form of tile method

reported in [16].

Computation of stable coprime factorizations for flexible structure models. Simple

models of structural components with elastic effects typically lead to transfer functions in

Hooonce realistic damping models are included. Linear vibration models of more complex

structures arising in aerospace apphcations usually will have transfer function models with

only a finite nunlber of poles in the closed right half plane. Restricting attention to such

transfer functions we indicate a simple procedure for coprime factorization over Hoo.

Let S C_ Hoo be a set of transfer functions analytic in a half plane including C+. Under

the above assumption any such transfer function P(s) can be expressed in the form,

P(s) = P,(s)+ P_:(s) (3.5)

where Pa E S C_ Hoo and P.¢ is rational and analytic in the complement of S with (a finite

number of) poles outside S. A stable coprime factorization can be readily obtained for the

(typically low order) transfer function as, P.¢ = ]Q,/)_-_, by well known state space construc-

tions [3]. Then P has stable coprime factorization,

P = N,D; _ = [fit'r- psbr]b; (3.6)

where Nr, Dr are S-stable. The separation of terms in (3.5) is readily carried out. given P(s)

by computing the residues of the finite number of unstable poles contributing to Pc.
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4 Control Computations for an Elastic Structure

To illustrate the computational approach for a simple elastic structure we consider the simply

supported Euler beam with torque control at one end. The beam lateral deformation is given

by v(t, z) with 0 _< z _< L and has dynamics described by the dimensionless PDE;

Or2 03v 04V - O. (4.1)
Ot 2 2_ O_-_z 2 + Oz 4

with boundary conditions at z = O,

v(t,O) = 0,
(9Z2 z:=O

= 0,

and at z = L,

02Vl = r,_]( t, L) : O, Oz2 z=L

with the control moment, r, applied at the right hand end of the beam. Tile transfer function

(r --* y) for beam control is

G_,,,(s, z) = L s sin A1 sinh As _ - sin A, _ sinh As
(A_ + A_) sin(A1) sinh(A2) ' (4.2)

where A_ = (-_ + iv_- (2)sL s, A_ : (_ + iv/i------_f)sL s, L is the beam length, ( is the

damping factor, and z is the observation point to be regulated on the beam. The transfer

function is meromorphic, and Gl,,,(s, z) E Hoo for any 0 < z < L.

The regulator problem considered arises from a requirement for a.symptotic rejection of

constant load disturbances at a point _ = 0.7. For the current numerical studies we tkke

L = 10., and the effective damping ratio, ( = 0.01. Stable coprime factorization is trivial

and we take N, = Aft = G_,,_, D, = Dt = 1. Exogenous inputs here include the output

load disturbance d and measurement noise model n and are described by their effective PSD

models representing constant (step) load disturbance and narrowband sensor noise as shown in

Figure 4.2. The frequency response of G_ is shown in Figure 4.1 with 1024 uniform frequency

samples over a bandwidth of 0 < 0., < 100. Clearly, the frequency response is irrational and

no obvious rational approximation is evident.

The optimal control design is regulation of the beam deflection at z/L = .7 and the

performance objective is given as,

1 S Tr {_ + _tO_,} ds
J- 2_j i_

where the tracking cost is modeled by PSD, q_v, and the control saturation PSD is q_,_ =

E{uu,}. Then given a constraint on the control power the scalar p, > 0 plays the role of a

Lagrange multiplier for the optimal design. In this case the required spectral factors;

(Gt_.G _ + p) = A.A (4.3)

(Gydr}dPltd,. + (I}n) = nn. (4.4)
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Figure 4.1: Frequency response for pinned-pinned beam control.

were obtained for # = .1 by the frequency sampled procedure and are displayed in Figure 4.3.

We remark that the computations of the indicated spectral factors effectively replace the com-

putational step of solving a pair Riccati matrix equation for the control (resp. filter) problem

typically encountered in state-space methods for control design. For distributed parameter

systems, solution of the Riccati equation (a PDE) requires discretization which is accom-

plished using the current algorithms by sampling and interpolation of the frequency response.

Thus numerical precision is concentrated over frequency bands significant for the given control

problem and with sampling under direct control of the designer. The solution obtained is ef-

fectively a high order rational approximation of the optimal solution with frequency response

interpolation points chosen by the design engineer. The optimal controller frequency response

thus obtained is shown for # = .1 in Figure 4.4.

5 Frequency Sampling Filters for Real Time Control Implemen-
tation

The frequency response computations for Wiener-Hopf control outlined and illustrated in the

previous sections identify various frequency sampled approximations to the ideal, possible

irrational frequency response for the desired optimal controller. Bandwidth and sampling can

be chosen by the design engineer to represent specific concerns based on models and/or control

performance. The frequency sampled computations obtain a specification for the frequency

response of the ideal (optimal) controller via its sampled representation. The design engineer

now has several options for implementing the controller depending on available hardware. In

contrast to the state space approach for finite dimensional systems, several new realization

opportunities are suggested by the frequency sampling approach.
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Figure 4.2: PSD for disturbance and sensor noise inputs for beam control.

A principal concern in implementation of high precision control laws for flexible structure

control is the order of the realization required for the online controller. The controller or-

der is usually taken to mean the dimension of the state variable realization of the transfer

function C(s) which will be implemented for realtime control. Implementation using analog

components of high order models is limited by circuit complexity, reliability and cost. As

a result considerable effort has been expended in methods for model order reduction. One

approach to controller realization which follows from the frequency sampled computations of

the previous section is to compute reduced order, continuous time, state space realizations for

the controller by techniques such as in [12].

Digital computer implementations are primarily limited by computational speed and al-

gorithm complexity effecting the ultimate obtainable sampling rate and considerations for

reduced order realization of the controller may be required. However, the emergence of special-

ized computer hardware implemented in VLSI single chip circuits for digital signal processing

opens new opportunities for realization of realtime control for flexible structures. We prefer

to consider realization options for the optimal controller in discrete time for implemenation

on a digital computer. Realization of the controller specified by its frequency samples can be

obtained using a FIR digital filter implementation.

Given the specified frequency samples obtained for the optimal controller,

Ck = C(j ok),

at frequencies, wu = kwew/N, where wew is bandwidth and N the number of uniformly

spaced frequency samples we describe the digital filter realization using z-transforms. With

discrete time sampling rate w, > 2wew the frequency samples correspond to interpolation

points in the z-plane given by s, zk = e jk2'_#vl , for k = 0,..., N - 1. The z transform which

3Bandwidth and sampling requirements would typically require padding the sequence of frequency samples

of leagth N with Nt - N zero values to avoid alia.sing.
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realizes the frequency sampling filter is

N-1

k=O

where the interpolating functions are,

1 - z -N

Fk(z)= N(I - eJk"/Nz-')'

with k = 0,..., N - I. A standard computation shows that the frequency sampling filter has

transfer function N-,

C(z)-1-- z-N _ 1 Ck _ (5.1)k=O 1 -- eJ-_f/Nz -1 = = cez-I

where the coefficients,
1 N-1

c, = c,, (5.2)
k=0

for l = 0,..., N " 1, are the Inverse Discrete Fourier Transform (IDFT)of the sequence

Co,... ,CN-1. The final form in (5.1) shows that the realization is a FIR realization. Such

realizations are nonrecursive and are efficiently implemented using high speed, single chip DSP

processors which utilize highly pipelined axchitectures to achieve high throughput.

6 Conclusions and Directions

Wiener-Hopf optimization of frequency domain models has been shown to offer significant

advantages for computation of precision controllers for irrational transfer functions arising

in control of flexible structures. Computational algorithms for causal spectral factorization
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and causal projection can be implemented based on frequency sampled representation of the

model response. Such models can be obtained from transfer function models or from frequency

response measurements of the controlled structure. Computations based on frequency response

sampling have been demonstrated for irrational transfer function models arising in the control
of flexible structures.

Requirements for precision control will involve frequency response models which are char-

acterized by a large number of flexible modes within the control bandwidth. However, for

control of relatively large, flexible space structures control bandwidth and resulting sampling

requirements for discrete time control implementations are well within the state-of-the-art for

high speed digital computers. Frequency sampling filters based on nonrecursive implementa-

tions can be efficiently implemented in modern DSP single chip processors for realtime control

of such systems.

Appfication of FIR realizations for realtime, closed loop control have not received much

consideration in the literature primarily due to increased phase lag by comparison with a

recursive realization. However, the rapidly developing technology for realtime DSP using

special purpose architectures offers throughput capabihties which may reduce the achievable

computational delay to within acceptable limits for certain applications. In such cases, high

order realizations may be feasible using nonrecursive implemenations which cannot be reafized

by recursive methods.
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Efficient Computer Algebra Algorithms

for

Polynomial Matrices in Control Design

J.S. Baras

D. C. MacEnany
R. Munach

Abstract

The theory of polynomial matrices plays a key role in the design

and analysis of multi-input multi-output control and communications

systems using frequency domain methods. Examples include coprime
factorizations of transfer functions, canonical realizations from matrix

fraction descriptions, and the transfer function design of feedback

compensators. Typically, such problems abstract in a natural way to

the need to solve systems of Diophantine equations (the so-called

generalized Bezout equations) or systems of linear equations over

polynomials. These and other problems involving polynomial
matrices can in turn be reduced to polynomial matrix

triangularization procedures, a result which is not surprising given

the importance of matrix triangularization techniques in numerical

linear algebra. There, we deal with matrices with entries from a field

and Gaussian elimination plays a fundamental role in understanding

the triangularization process. In the case of polynomial matrices we

are dealing with matrices with entries from a ring for which Gaussian

elimination is not defined and triangularization is accomplished by

what is quite properly called Euclidean elimination.

Unfortunately, the nmerical stability and sensitivity issues which

accompany floating point approaches to Euclidean elimination are not

very well understood at present. In this paper we present new

algorithms which circumvent entirely such numerical issues through

the use of exact, symbolic methods in computer algebra. The use of

such error-free algorithms guarantees that the results are accurate to

within the precision of the model data-the best that can be hoped.

Care must be taken in the design of such algorithms due to the

phenomenon of intermediate expression swell, the price paid for
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Abstract

Thirty years of control systems research has produced an

enormous body of theoretical results in feedback synthesis. Yet such

results see relatively little practical application, and there remains

an unsettling gap between classical single-loop techniques (Nyquist,
Bode, root locus, pole placement)and modern multivariable

approaches (LQG and Ha theory). Large scale, complex systems, such

as high performance aircraft and flexible space structures, now

demand efficient, reliable design of multivariable feedback

controllers which optimally tradeoff performance against modeling
accuracy, bandwidth, sensor noise, actuator power, and control law

complexity This presentation will describe a methodology which

encompasses numerous practical design constraints within a single
unified formulation The approach, wlnich is based upon coupled

systems of modified Riccati and Lyapunov equations, encompasses

time-domain linear-quadratic-Gaussian theory and frequency-domain

H theory, as well as classical objectives such as gain and phase
margin via the Nyquist circle criterion In addition, this approach

encompasses the optimal projection approach to reduced-order

controller design. The current status of the overall theory will be

reviewed including both continuous-time and discrete-time
(sampled-data) formulations The presentation will focus on the
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Abstract

The Robust-Control Toolboz [1] is a collection of 40 "M-files" which ex-

tend the capability of PC/PRO-MATLAB to do modern multivariable robust

control system design. Included are robust analysis tools like singular values

and structured singtdar values, robust synthesis tools like continuous/discrete

H2/H °° synthesis and LQG Loop Transfer Recovery methods and a variety of
robust model reduction tools such as Hankel approximation, balanced trunca-

tion and balanced stochastic truncation, etc.

In this paper, we will describe the capabilities of our toolbox and illustrate

them with examples to show how easily they can be used in practice. Examples

include structured singular value analysis, H °° loop-shaping and large space
structure model reduction.

1 Introduction

The fundamental issue in robust control theory - to find a stabilizing controller that

achieves feedback performance despite the plant uncertainty, is still the same issue

addressed by the classical 1930's feedback theory of Black, Bode and Nyquist (ref.

Fig. 1.1). Modern robust control theory has resolved many of the issues concerning

the "gap" between the theory and practice that had grown to troublesome proportions

in the 1970's. One key to bridging the "gap" has been the singular value Bode plat.

Recent progress in Structured Singular Value (SSV), H °° optimal control theory and

the model reduction techniques utilizing singular values have made the modern robust

control theory highly practical.

The inavallability of quality software implementing the techniques of robust con-

trol theory has, until very recently, significantly limited the access of both researchers

and engineering practitioners to these techniques.
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Fig. 1.1 Robust Control Problem.

Our Robust-Control Toolboz implements the most up-to-date robust control theory

like Perron SSV, optimal descriptor 2-Riccati H °° formulae, LQG/LTR and singular

value based model reduction techniques, ..., etc. The toolbox consists of a library

of 40 functions which extend the capabilities of PC�PRO - MATLAB TM and the

PC�PRO - MATLAB Control Toolboz. The toolbox itself represents four man years
research work clone at USC.

These 40-functions can be catalogued into 3 major areas:

• Robust Analysis

- Singular Values

- Characteristic Gain Loci

- Structured Singular Values

* Robust Synthesis

- LQG/LTR, Frequency-Weighted LQG

- H 2, H °°

• Robust Model Reduction

- Optimal Descriptor Hankel (with Additive Error Bound)

- Schur Balanced Truncation (with Additive Error Bound)
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- SchurBalancedStochasticTruncation (with Multiplicative Error Bound)

In this paper, we will highlight the most important functions in the toolbox,

demonstrate how easily they can be used and show what kind of results can be

achieved with practical problems. As for the details of the modern robust control

theory, they can be found in [7], [2] and the references therein.

2 Robust Analysis

The objective of robust analysis is to find a proper measure of the mnltivariable

stability margin (MSM) against uncertainty. Uncertainty may take many forms,

but among the most significant ones are noise/disturbance signals, transfer function

modeling errors and unmodeled nonlinear dynamics, etc. Uncertainty in any form is

no doubt the major issue in most control system designs.

Several tools to measure MSM are available: [1], [8]

• Singular values (Safonov, 1977; Doyle, 1978)

• Perron eigenvalues (Safonov, 1982)

• Diagonal scaling via nonlinear programming (Doyle, 1982; Tekawy et al., 1989)

Let's define the MSM first:

Definition 1 Multivariable Stability Margin (MSM)K,,,, p(.)-x

K,_(Tt_ ) _ p(T_)-' = i_f{Y(A)ldet(I- TwA) = 0}.

In other words, it's the smallest _(A) that can make the determinant (I - T_A)

singular (or the closed-loop system unstable). See Fig. 1.1.
A theorem summarizes the whole MSM idea:

Theorem 1 The system is stable for all stable Ai with IlLXill < 1, /f the MSM

K,,,(T_)> 1.

Unfortunately, exact computation of K,_ (or/,-1) would require solution of a non-

convex optimization problem and is therefore impractical. Fortunately, computable

upper bounds on K,_ are available, viz.,

K_.,I(Tv,,) = #(Tim ) < inf IlDTtmD-*llo. < inf IlDabs(Tu,,)D-111o_ << [[Tv.lloo
-- DE_D -- DE:D

where 29 := {diag(dlI,... ,d,,I)ld, > 0}.

Then using these upper bounds (some may be more conservative than others), one

can assure that the system is stable against the norm-bounded uncertainty IlA][oo _<

Km.
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A comparisonof the available upper bounds reveals that some are much easier to

compute than others. See table 2.1.
Table 2.1

Method Property Computation Reference

Optimal Diagonal n = 3, exact Km demanding Doyle, 1982

Scaling n > 3, 3 15 % gap Tekawy et aL, 1989

Perron Eigenvector very close to optimal easy Safonov, 1982

Diagonal Scaling diagonal scaling

Singular Value can be very easy Safonov, 1977
conservative Doyle, 1978

Let's see the following example.

Example: Given a system G(s) with multiplicative uncertianty at its input.

the MSM.

[-. 0]a(s)= "+"
a_4 8a 8+ a+S ,+S

Theorem 1 implies IlzXlloo_<(lla(I + a)-'ll®)-'.

Find

2_

IC

-I_

-X

-4t

-St

SimpdW VMm= v_. l*_mmml_Imw'Mme

_a,_r]-.._...
"%%

10.3 lO "l 10 4 I0 s I0 / IF If

Fig. 2.2 Singular Value vs. K,_ (upper bound).

This example reveals that the singular value upper bound is too conservative in

"robust analysis". Whereas, Perron SSV is much simpler to compute than diagonally

scaled nonlinear programming p.

3 Robust Synthesis

Classical control system designers often do "loop-shaping" to meet design specifi-

cations. So do modern robust control system designers. "Loop-shaping" for mul-
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tivariable systemsis done via the singular-value Bode plot. However, to shape the

loop transfer function L(s) is nothing but to shape the sensitivity function S(s) :

(I + L(s)) -x and the complementary sensitivity function T(s) = L(s)(I + L(s)) -x.

See Fig. 3.1

l._s)

 lf,

%

Fig. 3.1 SISO & MIMO Loop-Shaping.

There are several loop-shaping methods available in the Robust-Control Toolbox

(see Table 3.1), but H °° is one of our favorites.
Table 3.1

Methods

LQR

(Iqr.m)

LQG

(Iqg.m)

LQG/LTR

(Itru.m,ltry.m)

H 2

(h21qg.m)

H oo

(hinf.m)

Advant_es

• guaranteed stabilitymargin

• pure gain controller

• use available noise data

• guaranteed stability margin

• systematic design procedure

• address stability and sensitivity

• almost exact loop shaping

• dosed-loop always stable

• address stability and sensitivity

• exact loop shaping

• direct one-step procedure

Disadvantages

o need full-statefeedback

o need accuratemodel

o possiblymany iterations

o no stability margin guaranteed
o need accurate model

o possibly many iterations

o high gain controller

o possibly many iterations

o design focus on one point

o possibly many iterations

Example: Classical loop shaping vs. H _ for 2nd order low-damped system.

Given a plant G(s) which is 2nd order with damping 0.05 at 20 rad/sec, find a

controller to meet frequency response Bode plot (see Fig. 3.2)
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Fig. 3.2 2nd order plant open loop (( : 0.05, 0.5) and the L(s) spec.

A dassical design might be decomposed into the following: (see Fig. 3.3)

Step 1: Rate feedback to improve damping.

Step 2: Design high frequency (phase margin, BW, roll-off..).

Step 3: Design low frequency (DC gain, disturbance rejection..).

The classical result is shown in Fig. 3.4. Now, let's see how H °° approaches the

problem.

H °° Problem Formulation

We are solving the so-called H °° Small-Gain Problem ([3]) using the numerically

robust "optimal" descriptor 2-Riccati formulae of Sdonov, Limebeer and Chiang [4]

[5].

H °° Small-Gain Problem:

Given a plant P(s) (re/. Fig. S.5), find a stabilizing controller F(s) such that

the closed-loop transfer function T_n,, t is internally stable and its infinity-norm is less

than or equal to one.

But what makes H °° work is its unique and remarkable "all-pass" property:

At H °° optimal, the frequency response of T_, t is all-pass and equal to one (i.e.,

IIT:,:,II
This means that designers can achieve EXACT frequency domain loop-shaping via

suitable weighting strategies. For example, one may augment the plant with frequency
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Fig. 3.5 H °* Small-Gain Problem.
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Fig. 3.6 Weighting strategy block diagram.
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dependent weights W1, W2 and Ws as shown in Fig. 3.6. Then, the Robust-Control

Toolbox functions augtf.m and augss.m will perform the augmentation and create a

state-space for function hinf.m to find an H °° controller. Of course, these frequency

weighting functions have to be chosen so that a stabilizing solution satisfying the H °°
norm constraint exists.

In a typical application, either Ws(s) or W3(s) would be absent, leading to weighted
H °° costs of the forms

minll[ *]ll Ir[ *]11F(.) WsT < 1 or min < 1.
oo -- F(.) W2FS oo -

In our example, the frequency domain spec. can be split into W1 and W3:

(0.2s + 1) 2 . 40000

W_-X = P 100(0.005s + 1)2' Wfl = s2

as shown in Fig. 3.7.

SPECIFICATION ---> WEIGHTING STRATEGY
100
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Fig. 3.7 Weighting strategy for 2nd order problem spec.

The results are shown in Fig. 3.8 for different p's. Clearly, in the limit (as p

goes to 3.16) the cost function becomes "all-pass". The parameter p of W1 is the

only parameter on which we iterate for design; the Robust-Control Toolbox script-file

hinfgama.m automates this iteration.
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3.1 H °° Software Execution and Sample Run

To do an H °° control design with the Robust-Control Toolboz is relativelysimple.

Table 3.2.1 shows the complete user inputs for our sample problem.

Table 3.2.1

3>3> nug=[O 0 400]; dng=[1 2 400];

>> [ag,bg,cg,dg] = t/2ss(nug, dng);

>> sysg=[ag bg;cg dg]; zg=2;

>> wl=[2.Se-5 1.e-2 1;

0.01. [4.e - 2 4.e - 1 1]];

>> w2: [];

>> w3 = [1 0 0;0 0 40000];

> > [A,B1,B_, C1,C_,DII,DI_,D21,D_Pj = augtf(sysg, zg, wl,_P, w3);

>> hinf

Table 3.2.2 shows the output which appears on the screen for a successful run of

hinf.m.

Table 3.2.2

<< H-inf Optimal Control Synthesis >>

Computing the 4-block H-inf optimal controller

using the S-L-C loop-shifting/descriptor formulae

Solving for the H-inf controller F(s) using U(s) = 0 (default)

Solving riccati equations and performing H-infinity

existence tests:

1. Is DII small enough? OK

2. Solving state-feedback (P) riccati ...

a. No Hamiltonian jw-axis roots? OK

b. A-B2*F stable (P >= 0)? OK

. ...Solving output-injection (S) riccati

a. No Hamiltonian jw-axis roots? OK

b. /-G.C2 stable (S >= 0)? OK

4. max eig(P*S) < 1 ? OK

all tests passed -- computing H-inf controller ...

DONE!!!
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4 Robust Model Reduction via Basis-Pree Tech-

niques

In the design of controllers for complicated systems, model reduction arises in several

places: 1). Plant model reduction, 2). Controller model reduction, 3). Simulation of

large size problem.

However, naive implementations of model reduction methods such as Rosenbrock's

stair-case algorithm, Moore's balanced truncation, optimal Hankel approximation and

balanced stochastic truncation, etc., can fail on even relatively simple problems due

to numerical instability.

The Robust-Control Toolbox implements the "basis-free" version of the latter three

of the model reduction techniques, which are not only numerically robust but also

tend to achieve the ultimate result for practical problems. In particular, they all

possess the following special features:

1. They bypass the iU-conditioned balancing transformation, so that they can eas-

ily deal with the "non-minimal" systems.

2. They employ Schur decomposition to robustly compute the orthogonal bases

for eigenspaces required in intermediate steps.

These methods all enjoy attractive L °° error bounds - either an additive error

bound or a multiplicative error bound.

s Additive Methods:

- Optimal descriptor Hankel MDA (ohklmr.m).

- Schur balanced truncation (balmr.m, schmr.m).

• Multiplicative Method:

- Schur balanced stochastic truncation (reschmr.m).

4.1 Robust Model Reduction Theorems

For robust control system design, it is desirable that the reduced order model satisfies

the conditions of one of the following two theorems (ref. [1] [2]). Otherwise, the

controller design based on the "blind"reduced order plant model can be unstable !

Theorem 2 Additive Robustness Theorem: (see Fig. 4.1)

If _(AA) < or(O) for w < o_, (with Ajt and ffl open loop stable), then the closed-

loop system will be stable provided that the control bandwidth is less than w,, where

,,, := ,._{_ I__(0(j,o)) _>a(AA(j,,,))).
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................................ -i

:1
l

I
Fig. 4.1 Additive modeling error.

Theorem 3 Multiplieative Robustness Theorem: (see Fig. 4.2)

If'_(A_) <_ i for oJ <_ w, (with AM and 0 open loop stable), then the closed-loop

system will be stable provided that the control bandwidth is less than w,, where w, :=

max{_ I _(A_0_)) _< 1}.

TRUE PLANT G(s)
............................................. i

.....
Fig. 4.2 Multiplicative modeling error.

4.2 Examples of Model Reduction

Example 1: Find a 3-state reduced order model for the transfer function

0.05(87 + 8018 e + 102485 + 59984 + 45183 + 119s 2 + 49s + 5.55)

G(s) = 87 + 12.6se + 53.4885 + 90.9484 + 71.83s 3 + 27.22s 2 + 4.75s + 0.3

with Hankel singular values of the phase matrix

0"1 0"2 0"3 0"4

0.9959 0.9972 0.9734 0.7166

O-6

0.5635

O-6 O-7

0.0021 0
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Fig. 4.3 Schur BST-REM vs. Schur BT and Descriptor Hankel.
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Theresultsproducedby the Robust-Control Toolbozfunctions - ohklmr.m, schmr.m,

reschmr.m, are shown in Fig. 4.3. Clearly, the Schur BST-REM method that keeps

the reduced model staying inside a prescribed relative error bound produces the ul-

timate result in model reduction. Note that cr_ = 0 indicates only the "basis-free"

methods can handel the problem without numerical difficulty.

Example 2: Model reduction for a large space structure [6] (see Fig. 4.4).

Our design reequirement is to find a controUer to track LOS loops in 300 Hz BW

and to reduce plant disturbance response by a factor of 100.

The Hankel singular values after the inner loops axe closed indicate that the system

is non-minimal. Therfore, only the "basis-free" methods such as - Schur BT (schmr.m)

or Schur BST-ItEM (reschmr.m) can be used. Again, only the Schur BST-REM can

match the original model up to a "robust frequency" which is high enough so that

the required BW of 300 Hz can be satisfied (see Fig. 4.5 & Fig. 4.6).

Disturbances

Secondary (25-30)

Mirror a_ .

(7-12) t

Structral [

Member n>_

Primaxy Mirror #//1

_- _:': Disturbances

(i9-24)

Fig. 4.4 Large space structure.
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Fig. 4.5 Model reduction using Schur BManced Truncation.
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Fig. 4.6 Model reduction using Schur Balanced Stochastic Truncation.
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5 Importance to the Control Community

If the ultimate goal of research is to apply the theory to reality, then the contribution

of Robust-Control Toolboz is clear:

It provides a vital bridge between modem robust control theory and real control appli-

cations.

The following diagram (Fig. 5.1) shows how different groups of people with dif-

ferent backgrounds can utilize the Robust-Control Toolboz to achieve their personal

goals. For example classical control designers can use the toolbox to understand the

theory or to apply on a design. Non-robust control researchers can study the code pro-

vided by the toolbox together with the papers referenced therein to become familiar

with the robust control theory. Students can use the toolbox either for robust control

research or for realistic design studies. It seems that the Robust-Control Toolboz can

serve people from a variety of backgrounds.

Control "N Toolbox
Toolbox

Robust

Control

Toolbox

Robust-Control Toolbox

Robust

Control

Toolbox

Toolbox

@
Fig. 5.1 The importance of the Robust-Control Toolboz.
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6 Summary

The Robust-Control Toolbox

• Provides a bridge between modern robust control theory and the real-world

applications.

• Has the most up-to-date Robust-Control theories and algorithms.

• Is in readable M-files, so it's educational.

• Contains the tools one needs to do robust control system design_ analysis and

model reduction.

• Is direct, powerful and easy-to-use.
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H 2- and H°°-Design Tools for Linear Time-lnvariant

Uy-Loi Ly
Department of Aeronautics and Astronautics FS-10

University of Washington
Seattle, Washington 98195

Systems

Abstract

Recent advances in optimal control have brought design techniques based on optimization of H 2

and H** norm criteria, closer to be attractive alternatives to single-loop design methods for linear

time-invariant systems. Significant steps forward in this technology are the deeper understanding of

performance and robustness issues of these design procedures and means to perform design trade-

offs. However acceptance of the technology has been hindered by the lack of convenient design tools

to exercise these powerful multivariable techniques, while stir allowing single-loop design

formulation. Presented in this paper is a unique computer tool for designing arbitrary low-order

linear time-invariant controllers that encompasses both performance and robustness issues via the

familiar H 2 and H*" norm optimization. Application to disturbance rejection design for a commercial

transport is demonstrated.

Past three decades have laid a foundation on the theory of optimal control. Issues have been

actively pursued in algorithms for numerical solution of optimum designs, feedback properties of

optimal linear feedback (and feedforward) controllers and associated theoretical results of existence

and uniqueness. Filtering of these wealth of technology down to current practitioners have been

agonizingly slow. Demonstration and acceptance of these design techniques in typical flight systems

such as SAS (stability augmentation systems), manual controls and autopilot designs, are almost

non-existent. Hindrances in this effort are related to concerns raised in the following areas: design

simplicity, ease-of-modification during flight-test and incorporation of designers' intuition and

experiences in these "optimum" systems. Presented in this paper is the development of a design tool

that covers much of the advances in multivariable controls and its potential application to flight

controls.

II. ]_ackground and Motivation

Historically multivariable controls have been extensively developed based on optimal control _f

linear time-invariant systems. Class of design problems addressed in the past are optimal linear

regulator using full-state feedback or estimate-state output feedback. Research efforts to extend the

usefulness of multivariable control designs within the reach of experienced control designers are

concentrated in the following areas:

• Measures of design robustness in the presence of modeling uncertainties? 1-21,

t Numbers indicate references.
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• Synthesis methods to achieve trade-offs in performance and robustness 7,22-35,
• Model and controller order reduction 36-39,

• Direct synthesis of reduced-order controllers of given structure to achieve trade-off in

closed-loop performance and robustness, and at the same time facilitate design integration

over different operating conditions 23.

A weN-known property of feedback concept is its ability to regulate in the presence of plant

uncertainties. Measures of robustness are traditionally based on loop stability margins 4° (i.e. phase

and gain margins of individual control loops while maintaining other loops closed at nominal gains).

These single-loop robustness tests provide useful design criteria for the evaluation of current flight

control systems. Recent development in robusmess analysis techniques allow designers to examine

design sensitivity in the multiloop and multivariable settings. To detect conditions for design

sensitivity, one makes use of the singular values of loop return-difference matrix at appropriate plant

input/output locations. In addition rL-measure is defined to characterize design robustness to

uncertainties that are expressed in terms of plant parameter variations or those that have a

predetermined structure. The latter robustness measure, r_-measure, is difficult to evaluate exactly;

but it provides the most accurate description of design robustness in the presence of structured
uncertainties. Current research direction is to devise numerical schemes that approximate closely 12

(i.e. providing "least" conservative upper and lower bounds) or, exactly calculate the rL-function for

some specific types of structured uncertainties 13-21. Synthesis methods to improve design

robustness based on a general rt-measure are not available.

Guaranteed robustness of (-6dB,,,o) in gain margins and (-60",60") in phase margins from

optimal linear regulator have motivated researchers in developing design procedures to retain or

recover these robustness properties for state-estimate feedback controllers 7 (i.e. as in optimal linear

quadratic gaussian (L(_) designs). Fundamental understanding in the robustness recovery process

resulted in design methods classified under the category of LQG/LTR where, for example, loop

properties of a full-state feedback regulator are asymptotically recovered with appropriate selection of

process noise models 41, or in the framework of "asymptotic" pole assignment 42. One possible

drawback of these procedures is the tendency of having unnecessarily high gains in the estimator

design during the loop transfer recovery.
Controllers obtained from a LQG/LTR design procedure are usually of high order (i.e. order of

the controlled plant model augmented with models for actuation, sensor and design-shaping filter

dynamics). Implementation of these controllers in digital flight processors may be feasible with

anticipated advances in computing technology; but will undoubtedly be challenging from the point of

view of design traceability, reliability and maintainability. However it is often possible to reduce the

controller order using standard model reduction techniques such as modal residualization 43, balanced

truncation _ and optimal Hankel norm approximation 37. Careful considerations must be made

especially in the reduction of controllers so that closed-loop stability, performance and robustness are

preserved. Frequency-weighted reduction schemes have been developed to address these issues with

some success 39.

A remaining problem is the final integration of "suboptimal" reduced-order controllers to operate

over a wide range of flight conditions. This is usually achieved in an ad-hoc manner (e.g. curve-

fitting gain parameters optimized at individual flight conditions as a function of some physical

quantities such as calibrated airspeed, aircraft weight, aircraft center of gravity and dynamic

pressure).
With some of the above outstanding issues unresolved, it is evident that wide acceptance of these

design techniques has been difficult. Additional reason behind this difficulty in technology transfer is
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the lack of intuitiveness in the design approach to handle low-order controllers of given (i.e.

predetermined) structures (e.g. washout filter in the yaw damper design of a lateral control system

for turn-coordination, simple a-priori gain scheduling according to physical quantities such as aircraft

weights, dynamic pressure and calibrated airspeed, synthesis of dedicated structural filters for

control of lightly passively damped elastic modes, etc...).

Research in direct synthesis of reduced-order controllers for multivariable controls are being

actively pursued and have resulted in some promising design algorithms both in the continuous-

time 23,32 and discrete-timea5, 46 domains. Although theoretical development of the design techniques

have made significant strive, insights in applying them to the synthesis of practical flight control

systems are yet to be established. To facilitate the evaluation and technology transfer of multivariable

control design concepts, there is a need for an efficient and versatile design tool that is able to resolve

the above issues related to design implementation, performance, robusmess and integration (i.e. gain
schedule) over a wide range of operating conditions.

Ill. Desi_,n Tool Develonment

The objective of the design tool is to provide a unifi_ framework for applying recent advances in

robust multivariable controls to flight systems. To achieve this goal, development of efficient and

versatile computational algorithms is needed. Scope of the design concept and procedure will

hopefully enable and motivate experienced designers to appreciate the importance and value of

multivariable controls. Steps taken to accomplish the stated objectives are as follows:

• Formulation of control design problems and solution algorithms for the synthesis of robust
low-order controllers,

• Implementation of design algorithms in useful CAD tools for ease in obtaining design
solutions to a wide class of linear feedback/feedforward controllers,

• Ability to formulate other design specifications using linear and nonlinear equality and
inequality constraints.

Control Design Problem: Multivariable controls have primarily focused on applying

optimization to the design of control systems. Extensive work conducted to-date are on control of

linear time-invariant systems. The problem is the synthesis of linear controllers that meet specific

closed-loop performance and robustness over a range of linearized plant conditions. Surprisingly this

problem is identical to the one that experienced designers have to confront in their daily design work

where traditional single-input single-output (SISO) methods prevail. Inadequacies of these SISO

design techniques are well-known: neglect of cross-coupling effects, difficulty to satisfy multiple

design requirements, highly dependent on the designers' experience, trial-and-error. On the other

hand, advantages behind SISO design procedures are: the simplicity of its f'mal controller structure,

the ease-of-incorporating designers' experience into the design process and design flexibility for

post-flight test modification. A useful design tool would combine these existing SISO design
features into multivariable control synthesis.

Design Procedure Based on H 2 and H**-Optimization : Design methods for multivariable

controls can be categorized into two general classes depending on whether the control-laws are

synthesized based on minimizing a performance measure while satisfying other design constraints,

or just simply meeting design constraints (e.g. eigenstructure assignment).

In the category of performance-oriented methods, control algorithms are generally developed

from optimization of some weighted norms of the plant outputs and control inputs in a closed-loop
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system subject to deterministic or stochastic disturbances. Two commonly used measures are 1-I2

and H**-norms with interpretation in both frequency and time-domains. Until recently, and mostly

for mathematical convenience, majority of feedback and feedforward control-law synthesis are based

on I-I2-norm. Associated design schemes are classified under the following methods: linear quadratic

regulator (LQR), linear quadratic gaussian (LQG) design and, linear quadratic gaussian design with
loop transfer recovery (LQG/LTR).

Over the past decade, practitioners of these techniques have gathered valuable experiences in

applying these techniques to flight controls. Iterative procedures have been developed to achieve

trade-offs between performance and control bandwidths54, 55. However implementation of these

designs remains an area of concern and need further research development. Often these designs with

full-state feedback structure are implemented using a state estimator or observer. Procedures to

obtain design robustness in state-estimate feedback are done through the mechanism of Riccati

equation 41 or eigenvalue placement 42 starting from sufficient conditions for loop transfer recovery.

These procedures offer valuable insights into the design feasibility based on requirements of

closed-loop stability, performance and robustness. Unfortunately, difficulty in extending these

results to encompass traditional design philosophy (e.g. output feedback, low-order controller with

structure intuitive to designers, gain scheduling,...) remains. Attempts to fit these multiloop high-

order controllers into low-order and conceptually simple designs using, for example, controller order

reduction are not trivial and have been partially successful39, 43. This remains to be an area of
continued research interests.

A completely different, direct and practical approach to multivariable controls would be via the

route of parameter optimization. The control design procedure described in this paper is one of such

methods. It is based on the optimization of an objective function using _ pre-def'med controller

structure and subject to additional linear and nonlinear design constraints 56. The formulation allows

direct intervention of control designers through the set-up of the design objective function, the

controller structure and constraints on closed-loop stability, performance and robustness to plant

uncertainties. This design concept was originally developed in reference 23 for linear time-invariant

systems using objective function based on H2-norm. The design algorithm was efficiently

implemented into the computer-aided-design package SANDY. Evaluation of the objective function

and its gradients with respect to the controller parameters are performed analytically for a

diagonalizable closed-loop system. Subsequent improvement have been made in the area of

numerical optimization (e.g. found in the constrained optimization code NPSOL56), and in the

development of typical constraints encountered in flight control systems such as closed-loop

damping, covariance bounds on output and control variables. Encouraging results have been

obtained in a variety of control design applications22.26-28,31, 4s.

Reference 23 has also demonstrated the early application of such a technique in simple design

situations. Later applications have been in the design of missile autopilot 27, design of a reliable

stability and command augmentation system for a commercial transport22. 26, design of an improved

lateral ride quality control systern4S. 49. Usefulness of such a design tool has been further

investigated in the control of a remotely-piloted vehicle-So. 5! and nonrigid manipulators52, -s3.

Reference 53 actually applied and verified in experiments results achieved using the design

algorithm 23 to the synthesis of robust compensators for flexible strucntres with uncertain parameters.

This research has led to the development of a unified multivariable control design concept that

addresses virtually all flight control design problems such as stability augmentation systems, gust

load alleviation, manual and automatic control modes. Typical flight control systems can be

formulated exactly in the same situation as designers would when conducting designs using single-
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loop frequency-domain techniques. However, in the design solution, multivariable control methods

based on I-I2 and H**-optimization will be used instead to derive the appropriate design gains. Section

V illustrates briefly the design philosophy in the synthesis of a longitudinal control system of a

commercial transport.

With this unique design concept developed for solution of optimal H2-norm type of problems,

the work is later extended to address control issues related to H**-norm 47. The overall scope is to

provide a unified design algorithm for low-order controller synthesis that utilizes criteria based on

both 1-12and H**-norms 57,_s. To achieve this objective an efficient numerical algorithm has been

developed to solve the following optimal control problems:

(a) M_ H2 and H**-Design Ob_iective: Synthesis of feedback/feedforward controllers of fixed

(i.e. arbitrary) order and structure is based on the minimization of the objective function J given by

,:z II i' H -0°>ll. °,1:,
i=l R i lrZHiw(jCo) Ri lt2Hiw(jCo) (1.a)

or

l,g

J= Lira E {wi Sup

tr--_** i=l wi(t)

f [zT(t)Qiz(t)+uT(t)Riu(t)]dt

f w i T(t)wi(t)]dt

+ Wi2 E[zT(tf)Qiz(tf)+uT(tf)Riu(t0l }

(1 .b)

Note that Hzw(S) and Huw(S) are the transfer matrices between the disturbance inputs w(s) and the

performance outputs z(s) and controls u(s) of the closed-loop system respectively.
This formulation covers design criteria that are expressible either in terms of I-r2-norm or H _'-

norm, or a combination of the two. Another feature of this set-up is its ability to address design

robustness to plant uncertainties (e.g. structured and unstructured uncertainties at both the plant

inputs and plant outputs, plant parameter variations) through the use of aggregated closed-loop

responses over a set of plant conditions, signified by the summation index i (i=l,Np) and Np is the

total number of design conditions. An objective function that spans multiple plant conditions further

provides a means to establish gain scheduling across the entire design envelope.

Reference 23 demonstrated the usefulness of this design formulation in controlling an 8th-order

flexible mechanical system under a non-collocated sensor/control configuration. A second-order

controller has been designed that is robust to large variation in moment of inertia of one of the disks

in a four-disk system z3,53. The resulting robust controller turns out to be non-minimum phase. This

result agrees with the SISO control synthesis procedure 59 for active vibration control.

The design algorithms for evaluating both I-I2 and H**-norms use an equivalent time-domain

characterization. The equivalence is established using the familiar Parseval theorem 6°.

(b) _ Design Objective with H**-B0ungl Constraints: Alternatively one can define the control

problem being the minimization of an objective function J based on n2-norm,

J= E wi2 Ri •
i=l laH_w(j_) 2 (2)

subject to additional constraints
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Qi 1/2Hiw(jc0) I <
)'i

Ri 1/2H_w(jt-0) - (3)

for some positive scalar Ti (i= 1,Np). Recent work in H°°-optimization 33 follow similar past

development in optimal control for HZnorm problems to a _ plant model. Algorithms have

been developed for state-feedback and output-feedback controllers (of the same order as the plant

model) that satisfy given H°°-bounds (e.g. equation (3)). These methods can be applied iteratively to

yield solution of an H°°-optimal control problem.

The resulting LQG-like controllers that are solutions to the H_-optimal control problems suffer

the same drawbacks associated with traditional LQG controllers. Moreover, solutions of low-order

controllers (i.e. strictly less than the order of the plant model) for H°°-optimization are still not

available. Our method provides a convenient framework for H"-optimization using the early design

concept developed in reference 23 for low-order controllers. The outcome is a unified design

procedure that allows control practitioners to examine requirements based on current findings in H _-

bounds or other related measures (e.g. l_-measure, worst-case perturbations in parametric

uncertainties) for performance and robustness.

Finite.Time Quadratic Performance Index : One unique feature of the design algorithms for

H E and H--norm calculation is the usage of a finite-time quadratic performance index. The objective

function J(tf) (with a finite terminal time tf) for both L 2 and L - norms is given by the following

equations,
• For H2-norm :

• Random Initial Conditions:

= e2Ctt E[zT(t)Qiz(t)+uT(t)Riu(t)]dt < J(tf--.¢oo)J(tf) E wpi
i=l (4.a)

• Random Forcing Inputs:
N,

J(tf) = E wpi Ea[zT(tf)Q iz(tf)+uT(tf)Riu(tf)] -< J(tf---_)
i=l (4.b)

OF

fJ(tf) = _ _ wpi e2_t E[zT(t)Qiz(t)+uT(t)Riu(t)]dt < J(tf--,_)

• For H_-norm:

N,

J(tf) = E Wl_

r [zT(t)Qiz(t)+uT(t)Riu(t)]dt

(4.c)

i= 1 Itf w i T(t)wi(t) dt

J0 (5)
with wi(t)=Wo i exp(jooit) where wo i and too i are respectively the direction vector and frequency of

the "worst-case" inputs w(t) in the H**-norm evaluation at the i th plant condition.
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The formulation based on a finite-time horizon provides not only appropriate lower bounds to

these exact norms, but also an indication on internal stability for disturbable and detectable systems.

It is well-known that, if treated entirely in frequency domain, synthesis procedure that minimizes

either the L2 or L'-norms of plant outputs would not necessarily guarantee closed-loop stability.

With the proposed formulation, if an optimum solution exists from the minimization of J(tf) for

sufficiently large tf, then closed-loop stability will be achieved for a detectable, disturbable and

stabilizable system.

Another design concern in multivariable controls is the effect of input directionality 61 upon the

closed-loop performance. Sensitivity of closed-loop responses to command inputs in the presence of

plant uncertainties is often neglected or not explicitly defined in design techniques such as LQ, LQG,

LQG/LTR. The design procedure described herein is based on parameter optimization of design

objective that incorporates directly responses to specific commands. In this manner, effects of input

directionality arc obviously captured in the design objective through appropriately chosen input

directions and with the usage of multiple plant conditions. It is envisioned that the ill-conditioned

problem 61 of multivariable controls would no longer be a design issue.

IV. Design Tool Imolementation (SANDY)

Figure 1 shows a schematics of the CAD design tool SANDY. The design tool is innovative and

will serve a useful medium for the introduction of multivariable control concepts to a vast number of

traditional control designers.

SANDY Program
(Object Code)

I: Summary_ of Dcsi_ ResultsController Gains

Closed-Loop Analysis

- System Eigenvalues

- Output and Control Covariances
Design Constraints

Executable Code

Figtwe I Schema_cs of the Design Tool lmplemmtation SANDY

A procedure is set up to link the design code SANDY with the optimization library N-PSOL and

any user-defined Fortran subroutines defining nonlinear inequality constraints for the control design

problem. This capability provides great flexibility to incorporate any additional design specifications

to the problem without affecting the core program. An executable code is then generated to run the
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design optimization. This version of the executable code can be run repetitively without the need to

relink when the designers switch between design conditions, alter the design paran_ters while

keeping the same design constraints as defined in the user-def'med Fortran subroutines.
Characteristics of the disturbance model, weighting parameters in the design objective, selection

of the controller design parameters and options in built-in design constraints are entered in one single

data file. State matrices for the plant models and the controller model are defined in separate data

files. Printout of the design results will be provided at the end of the program execution. Future

development will include the generation of design data files for the plant models, optimized controller

model and the respective closed-loop systems in compatible formats for the analysis packages such

as Matlab, Matrixx and Ctrlc.

V. I)esitm Examole

Preli_ninary development of the above design algorithm for mixed 1-12and H**-optimization has

been applied to the disturbance rejection problem for a B767 aircraft (Figure 2). The design objective

is to synthesize a low-order feedback controller that minimizes the aircraft normal acceleration nzcg(t)

responses to vertical gust turbulence w(t). The performance relates to both peak responses (i.e.

worst-case) and mean-square responses to Dryden spectra.

B-767 Longitudinal Aircraft Model:

w(s) 0.9431ag

s+0.4447

15
s+15

Weight = 184,000 lbs, Mach = 0.80,
Altitude = 35,000 ft, c.g. Location = 0.18MAC

z(s) = nz s(s)

Longitudinal
Aircraft

Dynamics

y(s)-[ q(s) ]
- i nzcg(s)J

Kq

Knzeg(s2+bl s+bo)

s2+al S+ao

Feedback
Controller

Second-Order Controller

Figure 2 Disturbance Rejection Design for a B-767 Aircraft

Using Mixed H 2 and H**-Optimization

319



Mixed H 2 and Ho*- performance objective is given by

f 10n2zcg(t)+_2(t)]dt
[

2

J = Lim {W** Sup + W 2 E[10n_cg(tf)+Sec(tf)] }

w(t) /tf w2(t)dt

.to (6)

where _iec(t) is the elevator control. State matrices of the design model are given in the appendix.

The controller is set up to have output feedback (Figure 2) on pitch rate q(0 and a second-order

lead-lag feedback compensation on the normal acceleration nzcs(t). Figure 3 summarizes three
controller designs illustrating trade-off achieved in mixed H 2 and H**-norm optimization:

(a) HZ-norm optimization: With W2=l.0 and W**--0.0, this design simply solves the minimiza-

tion of the mean square responses to Dryden turbulence using the controller structure shown in

Figure 2.

(b) Mixed H2 and H_norm optimization: With W2=l.0 and W**=I.0, this design is a

predominantly H**-norm problem yielding results similar to those achieved with algorithms described

in Reference 33. In this design the mean-square responses of nzcg(t) is roughly 16 percent higher

than the I-I2-norm optimized design (Case a) while the H**-norm is reduced by 20 percent. To recover

the performance of H2-optimized design (Case a), we simply increase the penalty W 2 on the 1-I2-

norm performance.The following improvement is achieved with small degradation in H**-norm as

seen in the next design case.

(c) Im_trroved mixed H2 and H=-norm optimization: With W2=10.0 and W**=I.0, this design

provides proper balance between I-12and H--norm performance. The resulting H2-norm is almost

the same as that of the H2-optimized design (~ 1.3 percent higher) and the H**-norm is about 2.4

percent higher than that achieved in case (b).

O'J

_mim._mmma

W2=I0.0 , W.=l.0

H2-Norm =0.011825

H"-Noma = 0.021960

0.03 ..........................

0 i i H' o,m=002 7

10 .2 lif t 100 liP

0.03 .........

0.02t_i_--i!" t W2=l.0 , W,=l.0

H2-Notm = 0.013501

0.01 ......... H--Norm =0.021446

0 " ' ' ''"'"

10 .2 lif t 10 ° lip

0.03 • • I t ..t*t I ............ . ..t

i ii!!ii;i i !i!i;iii i i !i!ii!

0.0]__°"°20_..... ::";i-:::.., ..!_""': .... !i-i-i:.-i-i-!-iiii _.:.:;i..... i;" ii".i-i-i-i-i.i

10 .2 10 "1 100 lip

w 0_t/see)

Figure 3 Compxrbon Between IVlxed H2 and H--Nccm Optimiasl Deans
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Results of the H_-norm optimization are similar to those achieved by state-feedback or full-order

output feedback designs using methods described in Reference 33 as indicated in Figure 4. Advanta-

ge of the current design approach is its simplicity and low order structure.

0.025 ,. ...... : ......... : : :::::

........ iiiililii :: : ' :i:: (Doyle&Giover)
0.02 .....................? ":....... H2-Noma = 0.01247

- H**-Nonn = 0.021208

001 .....: ...........
_l W2 =I0.0 , W.,=I.O

0.01 H2"N°rm = 0.01 1825
b_ H**-Norm = 0.021960

0.005

0
10-2 1OI 10o 10t

Frequency co (rad/sec)

Figure 4 Comparison with Existing Ho'-Optknization M_ahod

VI. Future Directions

Recent work have provided several useful mathematical measures for robustness characterization

of multivariable feedback control design, numerical algorithms for their "exact" calculation and their

usage in robust control-law synthesis. Basically there are two kinds of robustness measures

depending on whether they are defined based on frequency-domain (i.e. Nyquist stability) or time-

domain (i.e. Lyapunov stability) criteria.

Methods in frequency domain have made significant strive since the early work 12 initiated by

Doyle. Analysis techniques to determine the p-measure for slructured uncertainty are still emerging

and are most likely computationally intensivel3-1s,2°-2L Complexity of these algorithms is partly the

result of the wide variety of possibilities in the modeling of the uncertainty block ,x (Figure 5).

_a) M(Pd*).Ko0),s) _s)

F'qsure5 Robum Conuol $]qulsml Ba_d _ Wor_-Ca_ U._emmintim of _(s)

Generally, the more structure (i.e. information) one assigns to the uncertainty block & the more
difficult it is to determine the necessary and sufficient bounds on p-measure 33.
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One approach in robust control-law synthesis is to make use of recent methods for "exact"

calculation of Ix or related measures to define the worst-case uncertainty model, say A*, and

incorporate this condition into a closed-loop model [I-t_*M(s,Ko(s))] for re-optimization of the

controller Ko(s ) embedded in the transfer matrix M(s).

For robustness measures based on time-domain approach 11, bounds on plant uncertainties

(AA,AB,AC,AD) in the state matrices (A,B,C,D) are determined (Figure 6) providing sufficient

conditions for closed-loop stability. These analysis procedures can be elaborated to obtain specific

worst-case plant conditions. As before once established, these conditions can be implemented into

the design procedure SANDY where one of the plant conditions represents the worst-case plant

model from which appropriate design constraints for robustness can be defined.

Figure 6 Robust Control Synthesis Based on Worst-Case
Plant Pema4_on (_*,/dS*,AC*,dD*)

Future work will also examine theoretical development of these robust design algorithms and

their numerical implementation. These methods will be applied to the synthesis of flight control

problems (e.g. SAS, autopilots, ride quality control, modal suppression, etc...) that include

robustness issues such as multiloop stability margins, plant parameter variation and unmodelled

high-frequency dynamics. Specifically we address the set-up of objective function and relevant

design constraints (e.g. closed-loop damping, handling qualities in terms of short-period frequency,

overshoots, command and control bandwidths, stability margins, limited control activities, etc...) for

the following flight control problems,

(a) Stabili _tyAum,nentation Systems:

• Pitch augmentation system

• Yaw damper design

• Disturbance rejection: ride quality, load factor reduction

• StructtLral mode stabilization: control of lightly damped structural modes

(b) Command Aumnentation Systems;

• Integral Controls

• Autopilots: airspeed, altitude, flight path control

• Manual control with handling qualities

• Target tracking

As one might envision, the control synthesis depends strongly on the design objectives (e.g.

inclusion of integral control, washout filters for decoupling in steady-state control, anti-aliasing

filters, time delay, etc...) regardless of the methods used in the determination of feedback and

feedforward control gains. One of our research goals is to identify components in the synthesis
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modelessentialto thedesignproblemsstatedin (a)and(b) based on common knowledge of the

design requirements in each particular situation.
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Abstract

The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their
special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic
Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic
Programs more practical for solving trajectory optimization problems. The ultimate goal is to bring trajectory
optimization solution speeds into the realm of real-time control.

The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs
encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL
factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting
recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases
the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time
numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go
by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of
the LP rank-1 updating procedure, although it may result in more changes of the active set than if pseudo constraints
were relaxed in a non-stagewise fashion. The usual stability of "closed-loop" Linear/Quadratic optimally-controlled
systems, if it carries over to strictly linear cost functions, implies that the savings due to reduced factor update effort
may outweigh the cost of an increased number of updates.

An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example
demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of
the proposed pseudo constraint relaxation scheme.

Introduction

The objective of the present work is to develop and test a special-purpose algorithm for the solution of
Dynamic Linear Programs (DLP). The general form of a DLP is as follows:

[_ T T]Tfind: _t = xl ... _ (la)

Illto minimize: J = Co cl ... cN

AooAolI l
_11 AI2 0 X 1 bt

subject to: - < 0 (lc)
• •

ANN_IL.XN-!

where the xi vectors constitute the decision vector lime history, the ci vectors are linear cost coefficients, and the Aii

and Aa+t matrix blocks and the bi vectors define the linear problem constraints. The bracketed equality and inequality

t Assistant Professor, Mechanical and Aerospace Engineering.
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signs in eq. lc indicate that both forms of constraints may be present; some rows may be equalities while others are
inequalities. The problem in eq. la-lc is also known as a staircase LP.

A reason for interest in this problem from an aerospace controls point of view comes from its relationship to
the following multi-stage trajectory optimization problem:

find:
T

[ T T T T T T]x= no xl ul x2 ... uN-i xN (2a)

to minimize:

subject to:

N-!

J -- _ L(xk,uk,k) + _(XN) (2b)
kffi0

x 0 given (2c)

Xk+l = f(Xk,llk,k) for k = 0 ... N-1 (20")

a(xk,uk,k){ _ }0 fork=0_. N-I (2e)

{°}aCxN,N) < 0 (21)

where the ui and xi+l vectors constitute the control and state vector lime histories, the L0 and dp0 functions

nonlinear stagewise and terminal costs, eq. 2c defines the initial conditions, eq. 2d is the discrete-time
difference equation, and constraints such as 2e and 2f may be present to restrict the states, or the control
both.

define the

dynamics
inputs, or

The current paper is part of a research program that seeks a fast and reliable way to solve the problem in eq. 2a-
2f. The ultimate goal is to do real-time aerospace guidance by repeatedly solving this problem. The program is
taking a two-pronged approach, algorithm improvement and parallelization of computations. This paper relates to the
first prong, algorithm improvement. Fletcher's L 1 penalty function, trust region adaptation of the method of

successive quzdratic programs (SQP) [1] is one algorithm for solving such a nonlinear program (NP). This algorithm

has fast local convergence properties, it ensures global convergence (to a local minimum), and it is good at handling
inequality constraints. The application of this algorithm to the nonlinear trajectory optimization problem results in
Quadratic Programming (QP) sub-problems with a special structure, the dynamic programming structure. Efficient
solution of the NP requires efficient solution of the dynamic QP (DQP). Special-purpose algorithms for efficient

solution of a DLP can be similar to special-purpose algorithms for efficient solution of a DQP. Thus, the present
paper, in concentrating on DLP, constitutes a sort of warm-up exercise for later development of a DQP algorithm.

In addition to providing a warm-up, the present work provides a point of comparison with other research efforts
in the field. Little or no work has been done on special-purpose DQP algorithms [2,3], but much attention and effort
has been devoted to special-purpose DLP algorithms (e.g., Refs. 4-7). Fourer provides a useful overview of different

avenues of approach that have been tried [7]. He groups algorithms f_ problem la-lc into three categories: Compact
Basis, Nested Decomposition, and Transformation. All get the correct answer, but none have proved particularly
successful in that none consistently out-perform the general sparse simplex method with regard to computation time.

The present algorithm is in the compact basis category; it works with a staircase factorization of the active

constraints. The factorization used, a staircase QL factorization, is consistent with the plan for subsequent upgrading
to handle the quadratic cost case. It has numerical stability, and there is no trade-off between numerical stability and
factor compacmess; general sparse matrix LP codes must deal with such trade-offs. The focus of the entire project is
on aerospace guidance problems, hence the submatrices of the problem, the Amand Aii+lblocks, are relatively dense.

Therefore, there is hope that the current algorithm will out-perform general sparse matrix LP algorithms on these
problems (e.g., algorithms such as MINOS [8]).

The body of this paper concentrates on explanation of the algorithm, with an example and conclusions at the

end. Before describing the algorithm, problem la-lc is related to a general LP on the one hand and to a control-type
LP on the other hand. The algorithm description begins with a review of the application of the L! penalty function

method to a general LP. The staircase QL factorization then gets presented along with methods for multiplier
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solution, decision vector solution, and rank-1 update. The algorithm explanation concludes with the presentation of a

specialized order for problem solution that could further reduce the computational burden. The example at the end of
the paper demonstrates the algorithm's applicability to aerospace trajectory optimization and examines whether the
special solution ordering yields increased computational efficiency.

Equivalent Problem Forms

The problem in eq. la-lc is a special case of the following general LP form:

find:

to minimize: J = c T x

where x is defined in eq. la and A, b, and c are defined as:

(3a)

(3b)

Oc)

I Aoo Am

All AI2

A--

0

Form 3a-3c is fully general.

0 l cl
, b= , c= (4)

ANN LbN.J

ItistheLP form usedindevelopinggeneralactiveconstraintalgorithms[I].

A more specialized DLP problem statement clarifies the relationship of these problems to controls:

find: ui for k = 0 ... N-1 and xk for k = 1 ... N
N-i

tominimize: J = { Cxk Cuk } + Cx N xs

k=0

(5a)

(5b)

subject to: x0 given

Xk+ 1 = F k x k + G k u k + h k

AxkXk+AukUk-bxuk {<} 0

AXNXN'bxuN {<} 0

for k = 0 ... N-1

for k = 0 ... N-1

(5,:)

(Sd)

(re)

(50

where there is a direct correspondence between eq. 2a-2f and eq. 5a-5f, all functions having only linear and constant
terms in the latter problem. The following definitions put problem 5a-5f in the format of problem la-lc:

_[bxu 4 rAxo-IXo=U o, Aoo=[Au°l, bo- - andco=
LGkJ L_ho J LFojxo, Cuo

[Axk Auki. [b:;t} = [exil
A,,-- b,-- .

LUkJ Vk j L%J
@

XN = XN, ANN = Ax N, bs = bxN, andcN = Cx N

Thus, the problem in eq. la-lc is related to controls.

(6a)

for k = 1 ... N-1 (6b)

for k = 0 ... N-1 (6c)

(6d)
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Algorithm

The L 1 Exact Penalty Function and an Active Set LP Method t

The Ll exact penalty function method enforces equality and inequality constraints as in 3c by adding a penalty

cost to the problem cost that is a weighted L_ norm of the constraint violations. The penalty function reformulation

of problem 3a-3c becomes

fred: x (7a)

to minimize: J = cT x + l_,x{llAe x - bell1+ II[Ain x - bi_]+lll} (7b)

where l_,x is a large positive constant, where constraints [A,b] in eq. 3c have been split into the equality cons_aints,

[Ac,bJ, and the inequality constraints, [Am,bi_], and where [a] ÷ = max(a,0). This technique is actually very similar to

the adjoining of constraints in Lagrange and Kuhn-Tucker formulations. The only difference is that the constraint

multipliers are effectively limited in magnitude by i_x. If la_x is greater than the magnitude of the largest multiplier

in the solution of problem 3a-3c, then problem 7a-7b has the same solution. The advantage of this technique is that it
solves the problem in a single phase, optimizing while achieving feasibility. It is a variant of the LP technique
known as the big M method. The primary reason for using it in the current paper is to make the algorithm
compatible with the proposed method for eventually solving the NP in eq. 2a-2f.

Active constraints refer to those constraints that are satisfied as strict equalities. The active set method for
solving problem 7a, Tb consists of the following steps.

Main Algorithm:

1. Guess solution, _t, and split [A,b] into active and inactive rows:

Ai_a,bi_a._ = P [A,b] (8)

where P is a permutation matrix, and where the active constraints at the guessed solution must
yield an A_t that is square and nonsingular.

2. Compute A,a'l

3. Compute I_a = - (A_) T (c + AT-u_Ahnta) where the elements of l_,ct are either -Ix_ x, 0, or +lam, x

depending on whether the corresponding inactive constraint is an equality or an inequality and

depending on whether it is positive or negative at the guessed solution, x.

4. Find the dement, i, of I_t that is furthest out of the allowable range for the penalty function,

(l_Oi _ [-la_, +_,.] for equality constraints, _ _ [0, +1_o_] for inequality constraints. Stop

if no elements are out of range; the current x is optimum.

• . -I

5. Compute the search dtrecUon, 8_ = A,_tei, where ei is the unit vector with all zeros except for a 1

in row i.

6. Compute the new guessed solution, x = x + ct 5'_t,,where ct has the same sign as (R,_t)i and where

its magnitude is chosen to he the smallest value that makes one of the inactive conslraints active,

min Ictl such that [Ai_,_t(x+ ot 5x) - bi_t] j = 0, for some row j.

t The discussion of this section deals with the problem form in eq. 3a-3c. The discussion is based

on algorithms presented in Ref. 1.
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A,ct, and go to step 3.7. Interchange rows i and j between [Ao_t,b,a] and [Ai,._t,bi_t], update -1

The equation in step 3 results from differentiation with respect to x of the augmented cost in eq. 7b. Despite the

nondifferentiability of eq. 7b for some values of _, differentiation can be done if the active constraints are treated as

adjoined equality constraints with unknown multipliers l_t rather than as L1 penalty terms. Steps 4 and 5 determine a

descent direction. The step length is determined in step 6. The step length rule ensures that the entire step is in a

descent direction of the piecewise-linear augmented cost. Because of the step length rule, the new active set changes

by only one row. Step 7 takes advantage of this fact in the recomputation of A,a's inverse.

The algorithm used in this paper starts out by assuming that a set of pseudo constraints are active. This yields
the identity matrix for the initial A,ct, and step 2 is trivial. The allowable range for the pseudo constraint multipliers

is different than for the actual problem cons_aints, la_ o e [0,0]. They get dropped from the active set in the course

of the algorithm unless the problem solution is not unique.

For each constraint addition/deletion the algorithm cycles through steps 3-7. Most of the computational load

per cycle is caused by manipulations with the inverse of the A,_t matrix, multiplication by it in steps 3 and 5 and

rank- 1 updating of it in step 7. The main idea of this paper -- indeed the main idea of all compact basis schemes -- is
to compactly represent factors of Aac t that are suitable for carrying out multiplications by A,_t's inverse and that are

easy to update when A,ct undergoes a rank-1 row change.

Staircase QL Factorization for Staircase LP

A,c t inherits a staircase structure from A as in eq. 4. The compact QL factorization used here performs a stage-

wise backwards sweep to factor the nonzero blocks of Ao_t. The following recursion yields matrices that constitute a

staircase QL factorization of A,a:

DI_ = Atolc t

_ Ak-lk-lac t Ak-lkac t ]Q 0 D_ =

QooDoo = Loo

" Dk.lk. 1 0 7

JDkk-1 Lkk
for k = N ..... 1

(9a)

(9b)

(9c)

where the Ak.lk_lact and Ak.lkae t matrices are the nonzero blocks of the staircase A,a matrix, and where the Q_ are

orthonormal and the L_ are lower triangular. The QL factorization is stored in the matrices Q_, L_, and D_ for k =

N ..... 0 and the matrices D_.I for k = N ..... 1. The Dij matrices have no special properties. Equations 9b and 9c are

only implicit relations for these factors, but the factors can be explicitly evaluated via Householder transformations.
At stage k, the factorization begins with the data Akqk-l,_t, Ak-_koct, and D_, and it computes Q_, L_, Dkqkq, and

Dkk-_. The result Dkqkq then completes the necessary data for stage k-1.

Numerical stability of the factorization is ensured by the use of orthogonal transformations only. The
computational complexity of the factorization algorithm is linear in the number of stages and cubic in the
dimension(s) of the blocks, which is as efficient as can be expected if the blocks are dense. The factor storage is linear
in the number of stages and quadratic in the dimension(s) of the blocks, which again is the best that can be achieved
with dense blocks.

Equations 9a-9b are a DLP equivalent to the matrix Riccati equation of time-varying, multi-stage Linear
Quadratic Regulator theory. The lower blocks of the fight hand side of eq. 9b act as a closed-loop dynamic difference
equation as will be shown in the next section. The upper block on the fight hand side, [Dk-lkq, 0], propagates active

constraint effects backwards in time; it summarizes the constraints that _q,._ must satisfy in order to make possible the

satisfaction of all constraints from stage k-1 onwards. Note that the number of rows in [Dkqk-1, 0] does not

necessarily equal the number of rows in [Ak-lk-loct, A_-Ih_t]"
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Staircase QL Solution for the Multiplier and Decision Vector Time Histories

The basic operations involved to do steps 3 and 5 of the LP algorithm presented above involve solution of a
linear system by orthogonal transformation and forward or backward substitution. This is similar to the forward and

backward substitutions of the simplex method and its variants. The transformations and substitutions are done in
stage-wise recursions using the stagewise factors. Performing the following backward recursion then forward recursion
yields the active constraint multipliers.

Backward recursion for intermediate multipliers hN through _o:

A T TL T _ =- c N - NNi_ima" AN'lNin_-lim m

LT _ T A T T
=" Vk+Ik _k+l" Ck" kkinact_imct" Ak'Ikin._-linac t

LTho T T= - Dlo _'l - Co"A°6_i_m_

for k = N-1 ..... 1

(lOa)

(lOb)

(lOc)

Forward recursion for intermediate multipliers l]o through _ and for active constraint multipliers ldoct through UNact:

_= q_o_o (lla)

for k = 0 ... N-1 (lib)

RN.= = _ (1 lC)

Step 5 of the LP algorithm is accomplished by solving the system of equations Aaet_¢, = % To illustrate how

the staircase QL factorization does this, the following equations present its use in solving the alternate system A,¢tx

= b,ct. Again, a backward recursion followed by a forward recursion yields the solution.

Backward recursion for intermediate nonhomogeneous constraint terms dN through d o and gN through go:

d N = bNact

["1:r-,.]
go = Q0o do

Forward recursion for the decision vectors x o through _j,_:

Lo Xo = go

Lkk X k = - Dkk.lXk_l + gk

fork= N ..... 1

fork= 1 ...N

(12a)

(12b)

02c)

(13a)

(13b)

As stated earlier, eq. 13b is like the closed-loop dynamic difference equation of multi-stage LQR theory. The matrix

Lu is lower triangular and allows for easy solution for x_ in terms ofx_._ and gk"

Rank-1 Update of Staircase QL Factorization

This section explains how to efficiently update the staircase QL factorization after a single constraint
addition/deletion. This procedure must be carried out every time step 7 of the main algorithm is encountered. One
could re,compute the entire factorization, but the practicality of all LP codes hinges on their ability to update the
factors for much less work than would be required to re,compute them from scratch.
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Thegeneraladd/dropupdatingschemeforthestaircaseQLfactorizationmustupdatetheresultsofeq.9a-9b
whenanarbitraryrowj atstagekaddgetsaddedtotheactiveconsWaintsetand another arbitrary row i at stage kdrop
gets deleted from the active constraint set. Thus, [Akk.ct, Aldt+l,ct]lk=k,dd gets a new row and [Akkac t, Akk+l,et]lk=kdrop

loses a row. The stages kadd and kdrop can have any relationship to each other, and the update algorithm must be able

to handle all possible cases. Three different cases can occur, kadd > kdrop, kadd = kdrop, and kadd < kdrop.

Efficient rank-I update can be accomplished by a series of stage-wise rank-1 updates linked together in an
appropriate manner. Three different stagewise rank-1 updating algorithms are needed to do this. The first algorithm
updates the factors computed in eq. 9b when a new row has been added to the bracketed expression on the left-hand side
of that equation. The second algorithm updates these same factors in the case of a row deletion from the bracketed
expression on the left-hand side. This second algorithm also modifies Qk-lk-X by a single Householder transformation.

The third stagewise algorithm updates these same factors when Dkk has undergone an arbitrary rank-I change. Recall

that the bracketed matrix on the left-hand side of eq. 9b represents the input data for a given stage and the Q_ matrix

together with the bracketed expression on the right-hand side represents the result of the stagewise factorization. The
following discussion explains each of these three algorithms and the way in which they work together to accomplish

the multi-stage rank-1 update.

First, consider what happens to the stage k factorization when a new row gets added to either [Ak_lk.X,_t, Ak.lk,ct]

or Dkk. The algorithm begins by adding a row and a column to Qad, with all 0s except for a 1 at the intersection of the

new row and the new column. Thus, Qkk remains orthonormal. Suppose the new constraint row is [pWkl, pri2], then

the new row and column of Qkk are added so that eq. 9b temporarily becomes:

o 110Q 121rAklk'cAk"1[Oklkl010T,0 l ,;klpT,2 ,,, pTQkk21 0 Qkk22 Dkk Dkk-1 Lkk

(]4)

where the Qkkij matrix blocks are just the blocks of the original Qkk matrix. Suppose nk is the dimension of the _-k

decision vector. Then it is also the dimension of the square lower-triangular matrix Lkk. A series of nk Givens

rotations can be performed to zero out pWk2 while preserving the lower-triangular structure of Lkk. The first Givens

rotation uses the last row of Lkk as the pivot row and zeros out the last element of pTk2, and successive rotations use

successively higher rows of Lkk as the pivot and zero out successive elements of pZk2 going from right to left.

Suppose these rotations are G_ to Gnk. Then the new stage k factorization becomes:

Q_k_,, = Gnk'..-*G1"

Q_il 0 Q_12"

0x 1 0 r

Q_,21 0 Q_,_

(15a)

[..,,.10]f°kkl01dTkl 0 T = Gnk-....G] pTkI pTk 2

Dkk-lnc w Lkkne w Dkk-I Lkk

(15b)

Dk.xk.lncw = [ Dk'Ik'IdTklI
(15c)

where the last equation has been included to emphasize the fact that the new Dk-lk-1 differs from the old l_.lk. _by only

a single new row. This fact sets the stage for the use of this same algorithm at stage k-1. The new Qkk is

orthonormal because the augmented matrix is orthonormal and because all Givens rotations are orthonormal. Thus,
the new factors have all of the required properties for use in the LP algorithm described above.

333



Next,considerwhathappenstothestage k factorization when a row gets deleted from either [Ak.lk.laet , Ak_lkact]

or Dkk. The following development is based on ideas for QP from Ref. 9. Write Qkk in the form

Qkk ----

Qkku qkkl2 Qkkl3]

q'r_21 q_99 qr_23 /
/

Qra31 q_32 Q_33-1

(16)

where the middle column conforms in matrix multiplication with the constraint row that is getting deleted -- rows of

Dkk can be referred to as constraints; they are propagated active constraints. The bottom blocks, [Qkk31,qkk32,Qkk33],

have nk rows, the same as in the bottom blocks on the right hand side of eq. 9b, [Dkk-l,Lkk].

The stagewise deletion algorithm starts with a Householder transformation in which the qkk22 row in the above

representation is used as the pivot row to zero out qkk12 in the first rows. Next, a series of nk Givens rotations is used

to zero out successive elements of qkk32 starting with the topmost element and working downwards. Again, the qkk22

row in the above representation is used as the pivot. If the Householder transformation is H and the Givens rotations
are G1 to Gnk, then the following changes to the stage k factorization result:

I Q_u_w 0 Q_I_o_, ]
0 T 1 0T = Gnk-....GI-H.

Q_2_w 0 Q_w

Q_H q_12 Q_,13

qTkk21 qkk22 qTkk23

Qkk31 qkk32 Qkk33

(:Ta)

- Qkkllnew Qkkl2new ] (17b)

I Dk-lk-lnew
p'rk_

Dkk-lnew

°1pTk2 = Gnk'...'G1 "H Dk-lk-1 0
Dkk.l Lkk

L_._,

(17c)

where [pTkl,pTk2 ] corresponds to the constraint that is getting dropped. Orthonormality of the original Qkk matrix

ensures the form of the result on the left-hand side of eq. 17a. Note that the matrix Dk-_k%¢w is a function only of

Dk.lk. _ and H; the Givens rotations do not affect it. Therefore, another Householder transformation, H", can be

constructed based on the same Householder vector. It yields:

[ vk" Ik-ln_v ]dTk.ldrop = H" Dk.lk_ 1
08)

where dk_ldrop is not necessarily equal to Pkl" This sets the stage for propagation of the constraint deletion process

backwards to stage k-1. If Qk-lk-1 gets transformed according to

[10]Qk-lk-lintmm = Qk-lk-1 0 H" (19)

then Qk-lk-lintm_m is still orthonormal because H" is orthonormal, and because H" is equal to its Wanspose, constraint

[0T,dTk.ld_p] is the constraint that must get dropped at stage k-1. The foregoing algorithm can accomplish the deletion

at this next preceding stage.
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Thealgorithmthatperformsthemulti-stagerank-1updateof thestaircaseQL factorizationstartswiththe
higheststageatwhicheitheraconstraintadditionordeletionoccurs.It useswhicheverof thetwoforegoingstagewise
updatingalgorithmsisappropriatetopropagatetheadditionordeletionbackwards.Itcontinuesuntilit reachesastage
atwhichbothanadditionandadeletionmusttakeplace.One,butnotboth,of thechangesatthisstagemaybethe
resultof abackwardspropagation.At thisstageof theconcurrentadd/drop,themulti-stagealgorithmfirstdoesa
single-stageconstraintadditionfollowedbyasingle-stageconstraintdeletionwithnochangeofstageinbetween.

If theindexof thisstageisk, thenDk.lk. 1 will differ from its pre-update value by a rank-I change at most.

This can be shown by recognizing that the result on the left-hand side of eq. 15c becomes the input data on the right-
hand side ofeq. 18 when an add followed by a drop both occur at the same stage:

IDk'tk'Inew I = H,,IDk'Ik'l 1
dTk.l drop dTkl

(20)

H" is a Householder transformation; it differs from the identity matrix by a rank-1 matrix, hence the conclusion about

the change in Dk-tk-t. Define this rank-1 change in terms of the vectors rk.] and Sk-l:

Dk.lk.lncw = Dk.lk. 1 + rk.lSTk.l (21)

If either rk__ or Sk-_ is the 0 vector, then the multi-stage rank-1 update is complete. If not, then another stagewise

updating algorithm is needed.

The final stagewise updating algorithm must update the stagewise factors for an arbitrary rank-1 change in the
data Dkk. It is allowed to produce at most a rank-1 change in Dk._k__. This restriction on its effect on Dk.tk. ] makes it

self recursive for all subsequent stagewise factorizations in the backwards chain. It can be used for updating the

factorizations of all stages that precede the concurrent constraint addition/deletion stage. It can be used recursively
until no more updating is needed.

One might suppose that the necessary algorithm has already been developed in a work such as Ref. 10. That
paper is a good reference for rank-I modifications, and it defines the general methodology used in the algorithm below,
but the relevant algorithm from [10] would result in a rank-2 change to Dk-lk-1. This would destroy the stagewise

recursive applicability of the algorithm, hence the modified algorithm presented below.

Suppose there has been a rank-1 modification to Dkk as in eq. 21 (except at stage k instead of stage k-l). Then,

eq. 9b gets modified:

Ak-lk-1.ctQ o

where

Ak'lk*ct ] = [ Dk-lk-I[Dkk+rkSTk] Dkk-t
o +r'-']io,Lkk I L Wk (22)

Wk rkI (23)

and where Vk-] and Dk_lk_ 1 have the same number of rows, ndk._. The algorithm starts by reducing the v-w vector to a

vector with zeros in all of its entries except the last two. This is done by first applying a Householder transformation,

HI, to the first ndk.l+l rows to zero out the first ndk-i rows. Then a series of Givens rotations, Gl to Gnk-1, is applied

to successive pairs of rows of the resulting vector to zero out successive elements until only the last two elements are
left nonzero. These same transformations are applied to all terms on both sides of eq. 22, and the two terms on the

right hand side of the equation are added together with the following (partial) result:
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{0]Gsk-I°'''°GI'HI Lkk +

I C_Vk_t0 0 ... 0 1* * * 0

Tklt"Wks ••......''''J......". (24)

where ct is a scalar and where asterisks (*) indicate nonzero scalar elements of the matrix. The top row of vector

entries in the right hand matrix corresponds to the upper right-hand 0 block in the bracketed expression on the right
side of eq. 9b. The bottom rows constitute a matrix with nonzero elements on the first diagonal above the main, on
the main diagonal, and below the main diagonal. All elements on diagonals that are 2 or more above the main

diagonal are zero. The nonzero entry in the first column of the top block, 0irk_l, results from application of the H 1

Householder transformation to matrix [0r,Lria]r.

The remaining transformations are applied in order to restore lower triangularity to the matrix on the right hand
side of eq. 24. First, a series of nk-1 Givens rotations, Gnk to G2_k-2, is applied to successive pairs of rows of the

matrix starting from the last two rows and working up to the first two rows in the lower block. Each rotation zeros
out one of the above-diagonal elements. At the end of this operation the matrix has the form

I (Y.Vk. 0 0 ... 0 1* * 0

(25)

so that the lower block is lower triangular. The final part of the algorithm is to apply a last Householder
transformation, H2, to zero out the first column of the top block. These operations result in the following factor

updates:

Q_ew = H2"G2nk-2"""GI"Ht'Qkk (26a)

"D,.I,.,,_.0 ] --":_-2"..."_1"rrD,,,_,o]..,, +rVk.,lrOTsT_]}Dkk.1_owLkknew HI[]_ Dkk-I Lkk L Wk jr.
(26b)

In both of the Householder transformations, the first ndk.l elements of the transformation vector are parallel to Vk4, and

none of the Givens rotations affect the first n_._ rows of the bracketed expression on the right of eq. 26b. Therefore,

Dk-lk4r_w differs from Dk-ti4 only by a rank-1 matrix:

Dk.lk.lnew _--Dk.lk. 1 + Vk.lyTk.1 (27)

where the vector Yk4 can be determined from the algorithm presented above. Thus, the algorithm updates stage k

according to the rank- 1 change in the stage's input data, and it produces a similar rank-1 change in the input data for
stage k-1. The multi-stage rank-1 updating algorithm propagates these rank-1 changes backwards until at some stage
one or both of the vectors in the rank-1 change are zero. This occurs at least by the time stage k = 0 is reached

because D._._ has zero dimension.
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Numericalstabilityof thefactorizationupdateisensuredbytheuseof orthogonal transformations only. The
computational complexity of the multi-stage update algorithm is linear in the number of stages affected and quadratic
in the dimension(s) of the blocks, which is as efficient as can be expected if the blocks are dense. If the number of
stages affected by a particular row interchange of active and inactive constraints can kept small, then the cost of the
update will be small. This fact provides the motivation for the solution scheme presented in a later section.

Possible Improvements to Banded Staircase QL Factorization

Several issues come to mind in considering the forgoing use of a QL factorization for an LP basis factorization.

They all revolve around a single question: is the entire factorization needed to implement the LP algorithm? For
instance, a general LP method has been developed that uses LQ factorization but does not store Q [11]. Not storing
the Q factors would yield a great savings in memory and computation time if it carried over to the present multi-stage
algorithm. This presents no difficulty to the procedures for solving for the multiplier and decision vectors, steps 3 and
5 of the main LP algorithm. The problem with not storing Q occurs in the factor update, step 7. There is no
apparent way to do the single-stage constraint deletion or the single-stage rank-1 modification without storing at least
some of the Q2,k matrix. Reference 9 has some ideas in its section on quadratic programming that could be used to

eliminate storage of the lower part of Qkk. Alternatively, storage of Dta and Dkk-1 could be eliminated. Savings in

computation time and memory would be about the same for either scheme, about 30% savings. These issues may be
explored in a later work.

Backwards-Sweeping Pseudo Constraint Relaxation and an Alternate Method of Selecting the
Active Constraint to Drop

In theory, all dynamic programming problems can be solved by first computing the cost-to-go at each stage,
then solving a single stage optimization at each stage. Part of the cost for each of these single stage problems is the
cost-to-go that results from the stage's decisions. For DLPs and for their associated LI penalty function problems, the

cost-to-go at a given stage is a piecewise-linear convex function of the decisions at that stage. This convexity
property gives rise to a hope that DLPs may have a property like the stability property of their quadratic-cost
counterparts, multi-stage LQR problems. In the DLP context, this property might mean that a small change in the
decisions at a given stage would give rise to even smaller changes in the state at subsequent stages. This might

translate into a grouping of constraint additions and deletions at stages nearly following the stage at which the decision
variations are taking place.

If this property exists, it can be exploited without the necessity of computing the entire cost-to-go function. If
all of the active constraint multipliers for constraints following a given stage are within their allowable range, then the
guessed solution is an optimal trajectory for all stages following that stage. Also, the local linear piece of the cost-to-
go function is known. Suppose the given stage can be optimized without causing any of the multipliers at subsequent
stages to exceed their L_ penalty function bounds. Suppose also that all of the original pseudo constraints are active

for the preceding stages. Then, the rank-1 updates that would have to be done during the optimization of that stage
might involve changes to very few stages. The assumption about the the pseudo constraints ensures that the updates
will not affect any of the stages preceding stage k-1 if stage k is being optimized. The possibility of stability implies
that max(kadd,kdrop) might, in most cases, not be much larger than k.

A change is needed to the main LP procedure presented above. It allows the multipliers at stages subsequent to

the stage being optimized to vary outside of their L1 penalty function bounds. The modification needs to be in the

selection of the active constraint that gets dropped on each cycle. In the main algorithm, the dropped constraint is the
same as the non-optimal constraint that gets relaxed in steps 4-6. This could cause an active constraint multiplier that
was within its bounds to go out of its bounds. If the multiplier corresponded to a constraint at a subsequent stage,

then the optimality of the subsequent stages would break down.

This situation can be avoided by performing a search in the active constraint multiplier space for the active

constraint to be dropped. This search is the dual of that carried out in steps 5 and 6 of the main algorithm, and the
search direction is defined by relaxing the L1 penalty function constraint on the multiplier associated with inactive

constraint j, the inactive constraint that is becoming active. The size of the step in multiplier space is chosen to be
the smallest that brings one of the active constraint multipliers to a bound which the multiplier would violate if the
step size were larger; the new active constraint must be included in this test. The active constraint whose multiplier
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boundlimits this step size is the active constraint that gets dropped. It is not necessarily the constraint whose
relaxation was dictated in step 3 of the main algorithm.

With this scheme in place, only pseudo constraints will have multipliers that are out of bounds in the step 3
optimality test. The number of non-optimal active constraints will never increase. In turn, each pseudo conslraint
will eventually be the constraint that gets chosen for dropping, though this may happen while another pseudo
constraint is being relaxed.

A special order has been chosen for relaxing pseudo constraints to take advantage of the possibility of savings
from "stability". The modified main algorithm starts by testing and relaxing only stage-N pseudo constraints in steps
3-6. This continues until all of the stage-N pseudo constraints have dropped from the active list or have zero
multipliers. Then the algorithm switches to exclusive consideration of the stage-(N-l) pseudo constraints in steps 3-6.
It performs add/drop cycles until all of these pseudo constraints get dropped or have zero multipliers. It continues this
stagewise pseudo constraint relaxation scheme in a backwards sweep all the way to stage 0. The guessed solution is
optimal after the last stage-0 pseudo constraint has been dropped or has had its multiplier go to zero. The trajectory
from stage k to stage N is an optimal trajectory once all of the stage-k pseudo constraints have been dropped or have
had their multipliers go to zero (although it probably will not be the final optimal trajectory associated with the
solution to the overall problem).

Comparison of Algorithm Complexity with Matrix Riccati Equation

Table 1 compares the present algorithm's computational complexity with that of related algorithms for a typical
aerospace controls problem. The time-varying multi-stage Matrix Riccati equation actually does not compute an Ale t

because it solves a different optimization problem. It has been included because control engineers are more familiar
with it. The three QL factorization entries assume that the factors are built up from initial pseudo constraints via 900
rank-1 updates. In the last two entries, assumptions are made about the average number of stages affected per rank-1
update. The table clearly indicates that the staircase QL factorization makes a tremendous improvement in comparison
to the dense factorization; the improvement will not be nearly so great in comparison to a general sparse matrix code.
Also, large improvements are expected from the special ordering of the pseudo constraint relaxation. Note that all of
the algorithms are far more costly than the implementation of a time-varying LQR solution. Inequality constraints are
difficult to handle.

Table 1.

A Comparison of Effort for Factorization of Ale t for a Typical Aerospace Control Example

(100 stages, 6 state vector elements, 3 control vector elements)

Solution Method Effort

(No. of MulL, Div., & Sqrt.)

Matrix Riceati Equation 112,000
Dense Matrix QL, Not storing Q 2,920,000,000
Staircase QL0 Arbitrary order of pseudo constraint relaxation 90,700,000
Staircase QL, Special order of pseudo constraint relaxation 4,400,000

Aerospace Example

A simple aerospace control problem has been solved with the algorithm in order to demonstrate the usefulness
of this class of algorithms on aerospace problems and in order to study the algorithm's behavior. The problem is one
of fixed-time maximization of the distance travelled by a thrust- and impulse-limited ground-to-ground rocket. The

continuous-time problem is:

fred: u(t) for 0 < t < tr = 12 sec (28a)

to minimize: J = - [ 1 0 0 0 ]x(tf) (28b)

subject to: x(0) = 0 (28c)
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which is a point-mass model of modon in the vertical plane. The acceleration (thrust) limit is 5 gs and the impulse
limit is 10 g-see. The first two state vector elements are horizontal position and velocity; the last two elements are
vertical position and velocity. Only thrust and a uniform gravity field act on the rocket. The first control vector
element is horizontal acceleration; the second element is vertical acceleration. Constraint 28h keeps the rocket above

the ground.

In order solve this problem with this paper's algorithm, the control time history has been approximated by a
24-stage zero-order hold. Additionally, the norms in constraints 28e and 28f have been approximated by functions
with octagonally-shaped contours. The 2-norm's contours are spherical; so, this approximation introduces some
modelling error. Fixing the end time seems unnatural, but it is necessary in order to be able to model the problem as
an LP. An NP model is needed to handle the free-end-time case.

The LP code solved this problem in 55 min. on an IBM PC-AT with an 80287 coprocessor. It started from a
first guess that violated inequality constraint 28h at every stage and that foolishly tried to maintain a constant thrust
for the entire trajectory. Figures 1-3 compare the multi-stage LP solution with the exact continuous-time solution.
In Fig. 1, the LP solution does better than the exact solution because of mis-modeling; it takes advantage of some
extra thrust available at some points of the octagon norm. The thrust magnitude and angle time histories, Fig. 2 & 3,
are both close to the exact solution, and the discrepancies are due to the same modeling error.

Figure 4 gives a 2-dimensional histogram of the constraint addition/deletion frequency. The left-hand horizontal
axis indicates the stage at which the pseudo constraints are being relaxed in the special backwards-chaining process.

The right-hand horizontal axis indicates the stage at which constraint additions and deletions are occurring during that
relaxation process. The vertical axis gives the frequency of additions/deletions at the given right-hand-axis stage during
pseudo-constraint relaxation at the given left-hand-axis stage. The extreme left-hand side of the figure shows no
constraint addition or deletions -- none can occur at any stage before stage k-1 when the pseudo constraints at stage k
are the ones being relaxed. The peaks on and near the center diagonal of the graph lend support to the conjecture that
most of the constraint additions/deletions will happen at stages near the pseudo-constraint-relaxation stage. Note,
however, that a moderate amount of constraint addition/deletion activity occurred near the terminal stage throughout
the optimization. Nevertheless, the average factor update was relatively cheap. Altogether, about 800 rank-1 updates
occur during the optimization. The total number of decision vectors in the time history is 312 -- 9 extra states are
needed to model the impulse constraint in eq. 28t".

Conclusions

An algorithm has been presented for solving Dynamic Linear Programs. It takes advantage of the staircase

structure of the active constraint matrix by factorizing it into staircase QL factors. These are derived in a stagewise
fashion and play a role similar to that played by the time-varying matrix Riccati equation in multi-stage LQR theory.
All of the usual linear programming functions have been implemented with the staircase QL factorization: decision
vector solution, multiplier solution, and rank-1 updating. Each function has a computational complexity of O(n2N) or
less, where n is a block dimension and N is the number of stages. This is the best that can be expected for dense
blocks. Numerical stability is assured via the exclusive use of QL factors and is independent of pivoting strategies.

The algorithm is a modified active set implementation of the big M method with pseudo-constraint
initialization. The modification restricts the set of non-optimal constraints that can be relaxed at one time to a single

stage. This restriction gets iterated through all the stages in a backwards chain. Also, the modification chooses the
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constraint that gets dropped in a way that assures optimality of the final portion of the solution time history. The
modified strategy's goal is to reduce the average complexity of the rank-I updates.

A 24-stage example problem has been solved. The algorithm solves the 312-dimensional problem in about 800
add/drop cycles, requiring 55 min. on an IBM PC-AT. The average update complexity is significantly reduced by the
modified active set strategy.
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Abstract

A temporal finite element based on a mixed form of the Hamiltonian weak principle is presented for optimal

control problems. The mixed form of this principle contains both states and costates as primary variables that

are expanded in terms of elemental values and simple shape functions. Unlike other variational approaches to

optimal control problems, however, time derivatives of the states and costates do not appear in the governing
variational equation. Instead, the only quantities whose time derivatives appear therein are virtual states and

virtual costates. Also noteworthy among characteristics of the finite element formulation is the fact that in the

algebraic equations which contain costates, they appear linearly. Thus, the remaining equations can be solved
iteratively without initial guesses for the costates; this reduces the size of the problem by about a factor of two.

Numerical results are presented herein for an elementary trajectory optimization problem which show very good

agreement with the exact solution along with excellent computational efficiency and self-starting capability. The

goal of this work is to evaluate the feasibility of this approach for real-time guidance applications. To this end, a
simplified two-stage, four-state model for an advanced launch vehicle application is presented which is suitable
for finite element solution.

Introduction

Future space transportation and deployment needs are critically dependent on the development of reliable

and economical launch vehicles that will provide flexible, routine access to orbit. A particular requirement now

receiving attention is that for an advanced technology heavy-lift vehicle. Future space transportation systems

will need to place large payloads - 100,000 to 150,000 pounds - into low Earth orbit at an order of magnitude
lower cost per pound. Such systems will also require on-board algorithms that maximize system performance

as measured by autonomy, mission flexibility, in-flight adaptability, reliability, accuracy and payload capability.
They must be computationally efficient, robust, self-starting, and capable of functioning independently of ground

control. Also, the algorithms must be designed with the anticipation that the launch vehicle will undergo

evolutionary growth [1].

One approach to optimal guidance consists of repeatedly solving a two-point boundary-value problem that

results from the traditional necessary conditions for optimality in an optimal control problem formulation. The

vehicle state at discrete instants of time along a trajectory can be viewed as a new starting condition, and the

remainder of the trajectory is reoptimized for that condition. The open loop optimal control is applied for a
short interval of time, and feedback is introduced by reoptimization at the next time instant. This process

presupposes that the two-point boundary-value problem can be reliably solved in a time interval that is small

compared to the control update interval. Knowledge of the previous solution helps in providing a good starting
point for the optimization process; however, no method has been demonstrated that can operate reliably in a
real time environment.

This paper examines a finite element approach to addressing this problem. Hamilton's principle has tra-

ditionally been used in analytical mechanics as a method of obtaining the governing equations of motion for
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continuous systems. In the 1970's a form of Hamilton's principle called Hamilton's law of varying action was

first used by Bailey (see, for example, [2]) to obtain direct solutions to dynamics problems in the time domain,

thus introducing Hamilton's principle into computaiional mechanics. During the last decade, it was shown by

Borri et al. [3] and by Peters and Izadpanah [4] that these direct methods, when expressed in a weak form,
could be competitive with numerical solution of the corresponding ordinary differential equations. Later work

by Borri et al. [5] has shown that a mixed form of the weak principle has further computational advantages,
namely that shape functions can be chosen from a far less restrictive class of functions.

In [6], Hodges and Bless have shown that optimal control problems can be solved in a virtually identical
way to that of the mixed form of Hamilton's weak principle. Hence, the method as used in [6] and the present

paper has been called the weak Hamiltonian method for optimal control problems. Finite element methods

have some advantages over other solution procedures; one advantage is that finite element methods provide

the possibility for development of algorithms which converge reliably. The present method, at least for the

problems investigated to date, is essentially self-starting. This meets a key operational requirement for on-

board algorithms. However, application of the finite element method to optimal control problems is rather

new. For example, Patten [7] used a Ritz-Galerkin technique with Lagragean interpolation polynomials. One

advantage of the present formulation is the allowance for a simpler choice of shape functions. The computational

savings which may stem from this are now under investigation.

In this paper, a weak form governing optimal control problems is derived, and a finite element procedure is
outlined for the solution of such problems. Numerical results for the solution of a simple trajectory optimization

problem are presented and compared with the exact solution to demonstrate the accuracy and efficiency of
the weak Hamiltonian finite element formulation. In anticipation of applying the present method to optimal

guidance of a rocket booster, a simplified two-stage model suitable for this problem is presented. In [6] a

one-stage model was analyzed and finite element results were compared to a numerical solution obtained using
a multiple shooting method [8]. Of particular interest are the self-starting operation and the performance in

terms of execution time and accuracy versus the number of elements used to represent the time span of the

trajectory.

Weak Principle for Optimal Control

A definite analogy exists between the mixed formulation of Hamilton's weak principle in dynamics and the

first variation of the performance index in optimal control theory. Specifically, there is an analogy between the

generalized coordinates and generalized momenta in dynamics and the states and co-states in optimal control

theory. Only a brief development of the weak Hamiltonian method for optimal control problems is presented
herein. More details on the development and the analogy with dynamics problems may be found in [6].

General Development

We start with a performance index taken from Eq. (2.8.4) of Bryson and Ho [9]. Its first variation will be

taken in a standard manner, except that states, costates, and controls will have arbitrary variations. Rather

than setting its first variation equal to zero, however, it will be set equal to an expression which contains the

terms that are necessary to transform all boundary conditions to the natural or "weak" type. The final weak

form is then obtained by integration of this equation by parts in such a way that no derivatives of states or

costates appear.

It should be noted that the fundamental relationships are not being changed. To make certain of this,

we will ensure that the resulting formulation produces the Euler-Lagrange equations and boundary conditions

which have already been established in optimal control theory (see, for example, [9], Eqs. 2.8.15 - 2.8.21).

In order to clearly understand what is meant by a "weak" formulation and the derivation of the weak
formulation that is to follow, we first study a more simple problem. Let us start with a functional of the form

j = F(y,¢,x)dx (1)

where A and B are fixed numbers. The necessary conditions for an extremal are defined by
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Introducing OF/cqy t = f for notational convenience and integrating by parts we obtain

(2)

( ) I_ OF _ f, A61/d_+ f@ = 0 (3)

The integrand in the above equation is the familiar Euler-Lagrange equation. The trailing term leads to the

boundary conditions. If 1/is specified at z = A or z = B, then 51/= 0 at z = A or z = B respectively. This

is referred to as a strong boundary condition. If 1/is not specified at one of the endpoints, then f = 0 at that

endpoint. This is referred to as a natural or weak boundary condition. The key points to remember are that

the trailing term itself is zero at each endpoint and that specifying y requires that 61/= 0 at a point.

In our weak formulation, we want all the boundary conditions to be of the weak type. Thus, even if

1/(A) = 0 then 6y(A) # 0. To allow for this mathematically, we introduce a new variable f which represents the

discrete value of f at an endpoint. The variation of J is now set equal to .f61/[_ yielding

) I-_-_y6y+ f@' dz =/6y

This is referred to as a weak form. If we integrate by parts, we obtain

(4)

£B (_-y - f') 6Ydz --(f - f)6Y]_ (5)

Note that the Euler-Lagrange equation is the same as before and that the two boundary conditions are that
f = f at the two endpoints; thus, the trailing terms are still constrained to be zero, but in a weak sense and 61/

need not ever vanish.

The advantages of the weak formulation are not apparent from the above discussion. However, when we

apply this type of formulation to problems in dynamics (see, for example [6]), or optimal control theory [6], and

use finite elements, then we have a powerful problem-solving tool.

Consider a system defined by a set of n states z and a set of m controls u. Furthermore, let the system

be governed by a set of state equations of the form z - f(z, u, t). We may denote elements of the performance

index, J, with an integrand L(x, u, t) and a discrete function of the final states and time _b[x(t/), tl]. In addition,

any terminal constraints placed on the states may be placed in the set of q functions _b[x(t]), t j] and adjoined to
the performance index by a set of q discrete Lagrange multipliers v. Finally, we will adjoin the state equations

to the performance index with a set of Lagrange multiplier functions A(t) which are referred to as costates. This

yields a performance index of the form

= - - - (6)
J (ATz L ATf) dt _ tz

Taking the first variation of J and setting it equal to an expression chosen so that all boundary conditions are
of the weak type, one obtains
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(7)

where

t!

(8)

The right hand side of Eq. (7) contains terms necessary to form all of the proper boundary conditions as natural

ones. The quantities _ and _ are discrete values of the states and co-states at the initial (with subscript 0)

and final times (with subscript f). Depending on the problem, these values will either be specified or left as
unknowns.

From Eq. (7), we can directly write down a weak formulation. Before this is done, however, let us examine
this expression to ensure that it produces the correct Euler-Lagrange equations and boundary conditions.

Integrating the 6_ T term in Eq. (7) by parts and expanding the variation of L, one obtains

rCOL_ T (Of_ T ]_f)_ 9. / + }

(OL)T f,_f_T ]}--6=T -_z + \O=] A+_ d,

+ a_"0,I - ,I) - a_T(_o-- zo): 0

(9)

where z0, A0, x I , and A/ represent the values of those functions at the initial and final times, respectively. The
coefficients of 6A T, 6x T, and bu T in the integrand are the three correct Euler-Lagrange equations, Eqs. 2.8.15

- 2.8.17 from [9]. There are also six trailing terms in Eq. (9) from which the boundary conditions can be

determined. The equations corresponding to the first four and the sixth of these terms correspond to the correct

boundary conditions in [9]. Namely, the requirement for the coefficient of/Sv T to vanish yields Eq. (2.8.21). The

requirement for the coefficient of/5t1 to vanish is equivalent to Eq. (2.8.20). The requirement for the coefficient

of/_z_" to vanish shows that the final value of A equals _1 as given in Eq.(8), which corresponds to Eq. (2.8.19).

If _0 is chosen as zero, the requirement for the coefficient of 8z0T to vanish requires the initial value of A to equal

zero; on the other hand, the requirement for the coefficient of 8A T to vanish requires the initial value of z to

equal z0, in accordance with gq. (2.8.18). Finally, the requirement for the coefficient of 5A_" to vanish demands
that the final value of z equal the discrete value _!; this has no counterpart in [9] since the elements of _1 are

usually unknown.

Having satisfied our requirement that none of the fundamental equations are altered, we may now derive

our weak formulation from Eq. (7). In order to allow for the simplest possible shape functions when we introduce

a finite element discretization, we do not want time derivatives of x and A to appear in the weak formulation.

Therefore, we integrate the _ term by parts in Eq. (7) yielding
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This is the governing equation for the weak Hamiltonian method for optimal control problems. It will serve as the

basis for the finite element discretization described below. It should be noted that normally one will encounter

various types of inequality constraints in problems that deal with optimal control. Inequality constraints will
be the subject of future research.

Finite Element Solution

Note in Eq. (10) that time derivatives of 6z and _A are present. However, no time derivatives of x, _, u
or 6u exist. Therefore, it is possible to implement linear shape functions for /ix and _ within elements and
constant shape functions for z, _, u, and _u within elements.

For simplicity, let us break up the time interval into N segments of equal length At ----_.L_. Let the values
of time be given by ti for i = 1, 2, ..., N + 1 at the points where the time interval is broken, the so-called nodes.

Here to = tl and t I = tlv+l. Then, introduce a nondimensional elemental time r such that

t -- t i t -- ti
*'=--=-- (O<r< 1) (11)

ti+l -- ti At

Now, in accordance with the above guidelines, and letting i = 1, 2,..., N, we can choose simple linear shape
functions

Sx = 6x(i)(1 -- f) + _x(i+l)r

6)t = _)_(i)(1 -- r) + df_(i+l)r
(12)

where the arbitrary, discrete virtual states and virtual costates are defined at every node point. (The nodal

indices are enclosed in parentheses to avoid confusion with the state column matrix index.) For the states and
costates, we can choose even simpler shape functions

_(i) if r = O;
z = _(0 ifO < r < 1;

_(i+t) ifr=l
(13)

and

{ _A(i) if r = O;
A= A(O ifO<r<l;

J_(i+l) if r = 1

(14)

where in both cases, i = 1,2,..., N. For u and/fu, since their time derivatives do not appear in the formulation,
we let
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u = u(i)

6u =/ffi(i)

where i = 1,2,...,N.

Substitution of Eqs. (12) - (15) into Eq. (10) along with Eq. (11) and

t = tl + rAt

dt = Atdr

(15)

(16)

yields a set of nonlinear algebraic equations which can be assembled in accordance with standard finite element

practice. For the sake of brevity, these rather lengthy equations for the general case are not written out explicitly
here. They are, however, written out in [6] wherein it is noted that there are 2n(N + 1) equations for the states

and costates, mN equations for the controls, q equations for the end-point constraints, and 1 equation for the

unknown time equation. In the assembly process, z(i) and J(i) drop out of the equations for i = 2,..., N (i.e.,

for all but the ends of the time interval to = t 1 and t/= tN+l). Thus, the total number of unknowns is 2n(N + 2)
for the states and costates, mN for the controls, q for the u's, and 1 for the unknown time tN+l. Thus, there are

2n more unknowns than there are equations, which allows for one to choose, say, x0 in accordance with physical
constraints and 4! in accordance with Eq. (8) and solve for the rest. The resulting equations may be explicitly

perturbed to obtain the Jacobian and solved iteratively by a Newton-Raphson method or by any method that
is suitable for nonlinear algebraic equations with very sparse Jacobians.

It is also pointed out in [6] that n(N + 1) of these algebraic equations contain the n(N + 1) unknown
costates and that these equations are linear in the costates. Thus, the costates can be solved for symbolically

in terms of the other unknowns, and the remaining equations can be solved circumventing the need for initial
estimates of the costates. This decreases the size of the problem by approximately a factor of two.

Example: A Free-Final-Time Problem

In this section a relatively simple optimal control problem is solved by means of the Hamiltonian weak

formulation, and the results are compared with the exact solution. Of particular interest is the computational

effort for varying numbers of elements, the ability of the method to converge for various values of the system

parameters without needing new initial estimates of the unknowns, and, most important, the accuracy of the
method versus the number of elements.

a

,x/

Fig. 1: Nomenclature for planar motion
with thrust acceleration = a

Problem Statement

The problem is taken from [9], article 2.7, problem 9. A particle of mass m is acted upon by a thrust force

of magnitude ma. Assuming planar motion and making use of an inertial coordinate system zx and x2 as shown
in Fig. 1, we may write the dynamical equations as
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{0)0 0 0 (17)
= 0 0 z+ acosu

0 0 asinu

where zl is the horizontal component of position, z_ is the vertical component of position, z3 is the horizontal

component of velocity, and z4 is the vertical component of velocity. The control is the thrust angle u, and

z(0) = _0 = [0 0 0 0J T. We want toobtain given values h of the final vertical component of position and U
of the horizontal component of velocity. The final value of the vertical component of the velocity, must vanish,
but we do not care what the final value of the horizontal component of position is. For the optimal control

problem, the initial time is taken to be zero, and the final time T is to be minimized so that _b= 0 and L = 1

which yields J = T. The elements of the end-point constraint function _b must vanish where

z2-h }
¢= x3-U

X4

(18)

In accordance with Eq. (8)

(0}£! = vl
v2

v3

(19)

Substitution of these equations into the weak form, Eq. (10), yields a system of algebraic equations whose

size depends on N.

Results and Discussion

These equations are solved by a Newton-Raphson algorithm with trivial initial guesses (that are never

changed regardless of input parameters) for N = 2. These results are then used to obtain the initial guesses for
arbitrary N by simple interpolation. In all results obtained to date for this problem, no additional steps are

necessary to obtain results as accurate as desired.

Representative numerical results for zt/h versus x2/h are presented in Fig. 2 for a case with _7_ = 0.75.

Also, the control angle u versus dimensionless time t/T is presented in Fig. 3. Based on other results, not shown

due to space limitations, accuracy for the costates is comparable to that for the states and for u. It can easily

be seen that N = 8 gives acceptable results for all variables.

It should be noted that the computer time on a Cyber 990 is only about 2 seconds for N = 2, N = 4, and
N = 8 and 3 seconds for N = 16. Thus, it is relatively insensitive to N.

Overall, the method provides very accurate results for this problem with only a few elements and for
minimal computational effort. Furthermore, in results that are not presented herein, the Hamiltonian is seen

to converge nicely to zero all along the trajectory as the number of elements increases.
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An Advanced Launch System Model

In this section, a model is presented which is suitable for evaluating the potential usefulness of the weak

Hamiltonian finite element approach in real time guidance of an advanced launch system. A two-stage vehicle

is considered that is simplified by not allowing for any inequality constraints.

We confine our attention to vertical plane dynamics of a vehicle flying over a spherical, non-rotating earth

as depicted in Fig. 4. This results in the following state model for the states m (mass), h (height), E (energy

per unit mass), and 3' (flight-path angle):
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9.81I, p '

"m-_ /a+ rTv cos-r

(20)

where T is the thrust, D is the drag, and V is the velocity. Here a, the angle of attack, has been adopted as a
control variable•

L T

a¥

D
W

Fig. 4: Vertical plane dynamic model

The aerodynamic, propulsion, and atmospheric models are given by the following equations:

T =T_a¢ - A_p

p =p0(1 - 0.00002255h) s256 for h _< ll000m

( h - 11000_P=Pllexp 63"_ ] for h > ll000m

r=Re+h; V:_f2(E+P); q:pV22

D =qS [CDo(M) + o_CNa(M)]

CLa( M) =CNa( M) - CDo( M)

a =ao_/1 - 0.00002255h for h < ll000m

a =295.03ms -_ for h > ll000m

(21)

The vehicle parameters chosen for this model are based on a Saturn IB launch vehicle SA-217 [10] and are

Isp, = 263.4s;

T,ac, = 8155800N;

Act = 8.47m2;

I, p2 = 430.4s

T_,ac_ = 1186200N

Ae2 = 5.29m2; S = 33.468m 2

(22)

where subscripts "1" and "2" refer to the first and second stages respectively. The aerodynamic coefficient data

CDo and CNa are presented as functions of the Mach number M in Tables 1 and 2. The physical constants
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used in the above model are the earth's gravitational constant p = 3.9906 x 1014m3s -2, the earth's mean

radius Re -- 6.378 x 106m, the sea-level atmospheric pressure P0 = 101320Nm-2, the atmospheric pressure at

llkm Pll = 22637Nm -2, the sea-level density of air P0 = 1.225kg m -3, and the sea-level speed of sound in air

a0 = 340.3ms-1.

M Cn0
0.20 1.00

0.75 0.45

0.98* 0.80

1.00 0.80

1.02" 0.80

3.50 0.20

6.00 0.02

Table 1: Aerodynamic coefficient Coo versus Mach number

(* denotes a common end point of two quadratic polynomial curves)

M CNa

0.00 6.20

0.50 6.35

0.98" 7.70

1.00 7.70

1.02" 7.70

2.50 5.20

4.40" 4.70

5.00 5.50
6.00 6.00

Table 2: Aerodynamic coefficient CNa versus Mach number

(* denotes a common end point of two quadratic polynomial curves)

The performance index is

J = _bl,' = ml, ' (23)

and the final time tl is open. The initial conditions specified are m(0) = 5.2 x 10Skg, h(0) = 1800m, E(0) =
-6.25 x 107m2s -_, and 7(0) = 75 °. The final energy is specified as E(t/) = -1.25 x 107m2s -2. The burnout

mass of the first stage is 192000 kg and the drop-mass of the booster is 51000 kg.

For this two-stage model, we must modify our formulation somewhat. We must accomodate for the unknown

staging ti_m G, the constraint on the mass at t, (as opposed to a constraint on the states at the final time),

the jump in the mass at t,, the jump in the mass costate at t,, the condition for a continuous Hamiltonian at

t, (continuous since _b and ¢ are not explicit functions of time), and finally the change in state equations at

t, (due to the change in thrust). We further point out that the control u is discontinuous at the staging time.

However, since only discrete mid-point values of u are solved for, the jumps are allowed to occur automatically
at the nodes.

The new performance index (with L = 0) is

J-: _o [AT(z- fl)dt + _t t! - --t. [,)tT(z f2)dt vl¢l -# -v2d22
• t. $! ty

(24)
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where fl and f2 represent the state equations before and after to respectively, ¢1 = rh(t_')- 192000 and
¢2 = k(t/) + 12500000.

The weak formulation is derived exactly as before and the same shape functions can be employed. This

time, however, we will discretize the time from 0 to t, with N1 elements and the time from t, to tl with N2

elements. The algebraic equations shown in [6] for the weak formulation are readily modified to account for the

various jumps and state equation discontinuities. The resulting equations are

+ ,5_T[_, -T'5"(i2)']N,+,,,,r [ a,,(aZ21:'i,1
i=N1 +1 k

+6X,_,+N,+x(=b)- 6xTv,+#,+,(_.,)= o

(E,+1  00000)

(25)

From Eqs. (8) and (23) it is seen that i1 is given by L1 0 v2 0JT. Also, we note that the only jumps

are in the mass state and the mass costate and these jumps are

en(tT) - ra(t+) = 51000

£,,(t:) - £m(t,+) = _,,
(26)

The finite element equations are solved using the method of Levenberg-Marquardt as coded in the IMSL

subroutine ZXSSQ [11]. Running a case for a few elements generates a good approximation for larger numbers

of elements. Initial guesses do not need to be very accurate, but the method is not nearly as computationally
efficient as a Newton-Raphson procedure where sparsity in the Jacobian could be exploited.

In Figs. 5 and 6 numerical results for the ALS model are given for 4 and 8 elements in each time interval.

(The number of elements in each interval is completely arbitrary.) In Fig. 5 the altitude profile is shown and
the control history is shown in Fig. 6. From past experience with the one-stage model, we believe the N1 = 8

and N2 = 8 to be a converged result. Furthermore, we see that even the N1 = 4 and N2 = 4 result gives a

reasonable approximation to the solution. It should be noted that these results are not realistic because of the

absence of state constraints, and because we have large angles of attack (more than 30 ° at some points) even

though we assumed small angles in the state equations. However, they do suffice to illdstrate the power of the
method.
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Asanindicationoftheaccuracyofthemethodinaglobalsense,theHamiltonianwasobservedtoconverge
to zero(theexactanswer)all alongthetrajectory.Thefiniteelementresultsareconvergingto theexactsolution
asN increases.

Conclusion

In this paper we present a weak Hamiltonian formulation for optimal control problems. Results are pre-
sented based on the weak Hamiltonian finite element formulation for a simple optimal control problem which

show the method is reliable, efficient, and accurate. For this and other problems it is easily programmed with

a self-starting algorithm.

To address the future needs of real-time guidance for future space transportation systems, we present a
four-state model for the dynamics of mass, altitude, energy, and flight-path angle. The angle of attack is

the control. The results show the power and efficacy of the present approach. It has several advantages for

applications in real-time guidance. It is not only reliable and efficient but has excellent self-starting capability.

Furthermore, initial guesses of the costates are not needed, and the method exhibits a graceful degradation in

performance with reduction in number of elements.

For future research we intend to concentrate on improving computational efficiency by exploitation of the

relatively significant level of sparsity in the Jacobian. We also will incorporate inequality constraints, and begin

to address the avoidance of atmospheric anomalies.
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In the design and analysis of robust control systems for uncertain plants, the technique of formulating what
is termed an "M-A model" has become widely accepted and applied in the robust control literature. The "M" represents
the transfer function matrix M(s) of the nominal system, and "A" represents an uncertainty matrix acting on M(s). The
uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple
unstructured uncertainties from unmodeled dynamics and other neglected phenomena. In general, A is a block diagonal
matrix, and for real parameter variations the diagonal elements are real. As stated in the literatm'e, this structure can
always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and
perturbations. However, very little of the literature addresses methods for obtaining this structure, and none of this
literature (to the authors' knowledge) addresses a general methodology for obtaining a _ M-A model for a wide
class of uncertainty. Since having a A matrix of minimum order would improve the efficiency of structured singular
value (or multivariable stability margin) computations, a method of obtaining a minimal M-A model would be useful.
This paper presents a generalized method of obtaining a minimal M-A structure for systems with real parameter
variations.

1. la.lx.0.a.at.liaa

Robust control theory for both analysis and design has been the subject of a vast amount of research in this
decade [1-35]. In particular, robust stability and performance have been emphasized in much of this work, as, for

example, in the development of H*°control theory [10-15, 19-23]. Moreover, the development of robust control
system design and analysis techniques for unstructured [1-9, 13, 19, 21] as well as structured [16-35] plant uncertainty
continues to be the subject of much research - particularly the latter. Unstructured plant uncertainty arises from
unmodeled dynamics and other neglected phenomena, and is complex in form. This uncertainty is called "unstructured"
because it is represented as a norm-bounded perturbation with no particular assumed structure. Plant uncertainty is
called "structured" when there is real parameter uncertainty in the plant model, or when there is unstructured complex
uncertainty occurring in the system at multiple points simultaneously. Plant parameter uncertainty can arise from
modeling errors (which usually result from assumptions and simplifications made during the modeling process and/or
from the unavailability of dynamic data on which the model is based), or from parameter variations that occur during
system operation.

Robust control design and analysis methods for systems with unstructured uncertainty is accomplished via
singular value techniques [1-9, 21 ]. For systems with structured plant uncertainty, however, the structured singular
value (SSV) [16-27 ] or multivariable stability margin (MSM) [28-33 ] must be used. In order to compute the
SSV or MSM, the system is usually represented in terms of an M-A model. The "M" represents the transfer function
matrix M(s) of the nominal system, and "A" represents an uncertainty matrix acting on M(s). In general, A is a block
diagonal matrix, and for real parameter uncertainites the diagonal elements are real. As indicated in the literature
[17,18,20,28 ], this structure can always be formed for any linear interconnection of inputs, outputs, transfer
functions, parameter variations, and perturbations. However, very little of the literature discusses methods for
obtaining an M-A model. For unstructured uncertainites, this model is very easy to obtain. However, for real
parameter variations, forming an M-A model can be very difficult. In [29 ], De Gaston and Safonov present an M-A
model for a third-order transfer function with uncertainty in the location of its two real poles and in its gain factor.
Although the given M-A model is easily obtained for this simple example, other examples do not yield such a
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straight-forward result. A general state model of M(s) for additive real perturbations in the system A matrix (where A
is assumed to be closed-loop) is discussed in [34]. Unfortunately, this model is not general enough for many
examples, since system uncertainty is restricted to the A matrix and the uncertainty class is restricted to be linear.
Morton and McAfoos [26 ] present a general method for obtaining an M-A model for linear (affine) real perturbations
in the system matrices (A,B,C,D) of the open-loop plant state model. In this model, an interconnection matrix P(s) is
constucted first for separating the uncertainties from the nominal plant, and then M(s) is formed by closing the
feedback loop. The M-A model thus formed can be used in performing robustness analysis of a previously determined
control system. If the feedback loop is not closed, It-synthesis techniques [19-21] can be applied to the M-A model for
robust control system design. Morton's result essentially reduces to that of [34] when the perturbations occur only in
the A matrix (and the A matrix of [34] is assumed to be open-loop). An algorithm for easily computing M(s) based
on Morton's result is presented in [35]. Although this method of constructing an M-A model is general for linear
uncertainties, many realistic problems require a more general class of uncertainties. Furthermore, no consideration is
given to obtaining a _ M-A model, where "minimal" refers to the dimension of the A (or M) matrix. Since the

M-A model is a nonunique representation, it would be prudent to obtain one of minimal dimension so that the
complexity of the SSV or MSM computations during robust control system design or analysis could be minimized.
However, none of the literature (to the authors' knowledge) addresses the issue of minimality.

This paper presents a methodology for constructing a _ M-A model for systems with real parametric
multilinear uncertainties, where the term "multilinear" is defined as follows:

Definition: A function is multilinear if the functional form is linear (affine) when any variable is allowed to vary

while the others remain fixed. For example, f(a,b,c) = a + ab + bc + abc is a multilinear
function.

Thus, the allowance of multilinear functions of the uncertain parameters provides a means of handling cross-terms in

the transfer function coefficients. A procedure is proposed for obtaining this model in state-space form for uncertain
single-input single-output (SISO) systems, given the system transfer function in terms of the uncertain parameters.
An extension of this result to multiple-input multiple-output (MIMO) systems will be given in a subsequent
publication. In this development, M(s) will represent the nominal open-loop plant, so that the resulting M-A model
may be used for robust control system analysis or design. The state-space form used in modeling M(s) is an extension
of Morton's result for real parametric linear (affine) uncertainties [26]. The paper is divided into the following
sections. A formal statement of the problem to be solved in this paper is presented in Section 2, followed by a
discussion of minimality considerations in Section 3. The approach is presented in Section 4, a proposed solution to
the problem is presented in Section 5, and the proposed procedure for finding a minimal M-A model is summarized in
Section 6. Several examples demonstraing the proposed solution are given next in Section 7, followed by some
concluding remarks in Section 8.

2. Problem Statement

Given the transfer function of an uncertain system, G(s,_), in either factored or unfactored form, as a

function of the uncertain real parameters, 5, find a minimal M-A model of the form depicted below in Figure 1:

G(s, qS)

U

P

q

M(s) Y

Figure 1. Block diagram of the General M - A Model

such that: 1. The diagonal uncertainty matrix, A, is of minimal dimension.
2. The model of the nominal plant, M(s), is in state-space form.
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Themodelmusthandlemultilinearuncertaintyfunctionsinanyorallofthetransferfunctioncoefficients.In
ordertoconstructaminimalM-Amodel,thedimensionoftheA matrix must be minimized. Hence, factors which
have been found to affect the dimension of the M-A model will be discussed next, followed by the approach used in

forming a solution to this problem.

3. Minimalitv Considerations

Inconstructingan M-A model ofan uncertainsystem,theA matrixcan become unnecessarilylargedue to

repeated uncertain parameters on its main diagonal. It is therefore of interest to examine the factors which can cause
this repetition, so that the number of repeated uncertain parameters can be minimized. A factor which can be shown to
cause unnecessary repetition in the A matrix is the particular realization used in representing the system. Examples
can be constructed which demonstrate this effect, and it appears that a cascade realization (and, in particular, cascaded

uncertain real poles and zeros) is a desirable form for obtaining a minimal M-A model. Thus, a general cascade-form
realization will be part of the approach taken in constructing a minimal M-A model. A problem arises, however, in
that some transfer functions have a form which precludes cascading uncertain real poles or zeros, such as:

G(s,5) = bls 2 + bcs + b_
(s + 0,)(s + 02)

G(s,5) =
(s + 0,)(s + 02)
S2 + al s + a2

where 01 and 02 are assumed here to be uncertain (and hence a function of 5). Cascading the poles and zeros for either

case would result in improper transfer function blocks to be realized. For these cases, it is unavoidable for the
minimal A matrix to have repeated uncertain parameters on the main diagonal. However, for each inseparable pole or

zero pair it is only necessary to repeat one uncertain parameter. This issue will be addressed in the proposed solution,
and a minimal M-A model for the first transfer function above will be given as an example.

Another factor which affects the dimension of the M-A model is the form of the coefficients in the system

transfer function. If any of the coefficients is a nonlinear function of the uncertain parameters instead of a multilinear
function (e.g., there are squared uncertain terms in any of the coefficients), then extra dependent uncertain parameters
must be defined in order to represent these terms in a multilinear form. For example, 512 would be represented as

5152 where 52 -- 5 t, and both 51 and 52 would appear in the A matrix. Thus, for this case, it is again necessary that
the minimal A matrix contain repeated uncertain parameters on its main diagonal. An example illustrating this

situation will be presented later.
These issues are addressed in the proposed solution for constructing a minimal M-A model. The approach

taken in forming this solution is described in the next section.

4. aaax.ga 

Based on the problem definition and the minimality considerations outlined above, several issues will be
addressed in forming a solution to the problem of constructing a minimal M-A model given the transfer function of an
uncertain system. First, a general cascade-form realization will be found which can be used to obtain a minimal M-A
model. Second, the minimal A matrix will be determined for any uncertain system such that extra dependent

parameters are assigned to account for inseparable pairs of uncertain real poles or zeros as well as non-multilinear (e.g.,
squared) terms. Third, a method of obtaining a state-space realization of M(s) for any uncertain system will be found.
Therefore, the proposed approach for constructing a minimal M-A model is given as follows:

1. Obtain a cascade-form realization of the system so that the state-space uncertain model can be written as:

_= Ax + Bu (1)
y= Cx + Du

where: A = A + [AA], B = B + [AB], C = C + [AC], D = D + [AD] (2)
O O O O

The terms with the "o" subscript (A o, B o, C o, D o) represent the nominal matrix components, and the "A" terms

(AA, AB, AC, AD) represent the uncertain matrix components. To eliminate confusion of the A notation, the
diagonal uncertainty matrix, A, of the M-A model will be represented as [A], and the AA, AB, AC, and AD matrices
will be represented as [AA], lAB], [AC], and lAD] wherever clarification is required.
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2. ObtainaminimalM-Amodelasdescribed in the problem definition and pictured in Figure 1, where:

a. The minimal uncertainty matrix, A, is defined as:

 [8r .83 .....amJ-- [81,8DJ= [8] (3)

where: A _ R mxm, 81 E Rml, _D e RmD, 8 e R m

and: m = the minimal number of uncertain parameters
m I = the number of independent parameters given in G(s,8)

mD = the minimal number of dependent (or repeated) parameters

Also: p = [A] q (4)

where: p = the uncertain parameters input to M(s), P _ Rmp

q = the uncertain variables output from M(s), q _ Rmq

Since an M-A model is minimal if the dimension of the A matrix, m, is minimal, where m depends
on m I and m D, with m I being given and fixed, a formal def'mition of a minimal M-A model can be
stated as follows:

Definition: An M-A model is _ if m D - i.e., the number of dependent (or repeated) parameters in the A matrix -

is minimal (or zero, if possible).

b. The state-space model of the nominal plant, M(s), is an extension of Morton's result [26] and has
the following form:

(5)

where Bxp, Cqx, Dqp, Dqu, and Dyp are constant matrices. Thus, M(s) can also be written in the
equivalent shorthand notation defined as follows:

M(s) E j fAoMll (s) MI2 (s)

= : = Cqx

M21 (s) M22 (s) Co
Bxp B° t

Dyp D O

where: M11(s) = q(s)Ip(s) = Cqx(sI-Ao)'l Bxp + Dqp

Ml2(S) = y(s)/p(s) = Cqx(sI-Ao)'IB o + Dqu

M21(s) = q(s)/u(s) = Co (sl- Ao)'1 Bxp + Dyp

M22(s) = y(s)/u(s) = C o(sI-Ao)'IB o + D O

(7)

It should be noted that in [26] the Dqp matrix was required to be zero. In this paper, however, Dqp is
allowed to be nonzero in order to model the multifinear (cross-producO uncertain terms.

The results for constructing a minimal M-A model via this approach are presented in the next section.
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5. Proposed Solution

The proposed solution will be presented in two parts: the results for obtaining a cascade-form realization of
the uncertain system will be summarized first, followed by the results for obtaining the state-space realization of a
minimal M-A model.

5.1 Cascade-Form Realization

Given the transfer function of an uncertain system in terms of its uncertain parameters, G(s,8), it is desired to

realize the system in a cascade form of first- and second-order subsystems. Thus, if the transfer function is given in
unfactored form, the numerator and denominator polynomials must be factored into f'n'st- and second-order terms. The

given transfer function will then be represented as follows:

G(s,8) = Ky(8) GC(S,8) GR(S,8) Ku(8)
(8)

where K u and Ky represent input and output gain terms, respectively, and G R and G C represent the real (f'u'st-order) and

complex (second-order) transfer function components, respectively. Then :

GR(S,8 ) = GRk(S,8) GRk_l(S, 8) ... GR2(S,8) GRI(S,8)
(9)

GC(S,8) = GCI(S,8) GCI.I(S, 8) ... GC2(S,8) GCI(S,8)
(io)

GRI (S)8) = [_2i-I S + [_2i
s + Cti (11)

Gct (s,8) = b3i-2 S2 + b3i-I S + b3i
s2 + a2i.l s + a2i (12)

and: k = number of real (In'st-order) blocks

1 = number of complex (second-order) blocks.

Any or all of these transfer function coefficients may be uncertain. The uncertainty may arise from either the
coefficient itself being uncertain, or from the coefficient being a function of one or more uncertain variables.
Therefore, for either case, any of the coefficients may be a function of 8. Furthermore, the uncertain variables may
have either an additive or multiplicative form:

c = % + 8_ , e = %(I +8_) (13)

The following cascade-form state-space realization of this system is proposed:

m

G(s) =

AR 0

BcCR AC

Ky D c C R gy CC

BRK
u

EC ER K u

Ky ECD R K u

(14)

where:
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AR=

AR l 0 " " "

B R2C R 1 A R2 . . .

D R C R B R 3 C R 2 " " "BR3 2 1

BR4 D R DR B CR ....3 2CR1 R4DR 3 2

BR D R ...DRCR2"'"BR k-lDR k'2""DR 2CR 1 k-1 k-2

ERkDRk-I"" DR2CR1 BRkDR k-1 ""DR3CR2 " " "

0 0

0 0

0 0

0 0

A Rk.1 0

B ReRk.1 A Rk

BR=

BR 1

B R2DR 1

BR3DR2 DR1

B R2DR4 D R3D 1_1

B Rk_l D R k-2 "'" DR 2DR
1

B Rk D Rk.1... D R2DR1

(15)

(16)

DRkCR k-1CR k'] (17)

D R = EDRkDR k_l"" DR2DRI_ (18)

The A C, B C, C C, and D C malrices have the exact same form as (15) - (18), except that the subscripts "R" and "k" are

replaced by "C" and 'T', respectively. The submatrices are defined as follows:

ARt = -Oq BRt = I

CRi = 132i - Oq [_i-I DRi = 132i-I

(19)

[o 1] Bci io]-a2i -a2i-i 1

Cci = [ (b3i - a2i b3i-2) (b3i-i - a2i-1 b3i-2) ] Dci = b3i-2

(2O)

The realizations { ARi, BRi, CRi, DRi } and { ACi, BCi, CCi, DCi } represent the i th real (f'wst-order) and complex

(second-oxder) systems GRi(S,8 ) and Gci(s,8), respectively. Thus, for the real subsystems, i = 1, 2 ..... k, and for the

complex subsystems, i = 1, 2 ..... 1.
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Theresultingcascade-formrealizationoftheuncertainsystemisthereforegivenfrom(14)as:

A = Bc CR Ac BcDR Ku

C = [ Ky Dc CR Ky Cc ] D = Ky Dc DR Ku

(21)

The above model is a general cascade-form realization for any uncertain open-loop SISO transfer function.
The model does not, however, handle nonmonic denominator polynomials with uncertain leading coefficients. This
would result in fractional (i.e., rational) matrix elements in the realization with uncertain parameters in the
denominator of these elements. For real uncertain poles or zeros, two factors determine whether the real (first-order) or

complex (second-order) block form should be used. The first is the nature of the uncertainty associated with these
terms, and the second is the form of the transfer function. If the real pole or zero locations are the uncertain parameters
and the transfer function form allows these poles or zeros to be separated out, then the real block form should be used.
If the transfer function form does not allow this separation, then the complex block form must be used. Furthermore,

if there is a 12_ of uncertain poles or zeros that cannot be cascaded, then the resulting minimum A matrix will have a

repeating parameter on the main diagonal for each inseparable pole or zero pair. Alternatively, if the coefficients of the
second-order polynomial associated with the real poles are the uncertain parameters, then the complex block form
should be used. These eases will be illustrated in the Examnles section of this paper. The formulation of the

minimal M-A model will be presented next.

5.2 Minimal M-A Model

In formulating the minimal M-A model, the minimal A matrix must be determined In'st, followed by the
state-space realization of M(s). Thus, the results for formulating this model will be presented in this order.

5.2.1 Minimal 6 Mal_ix

The minimal A matrix is defined as in (3) with:

m = mI + ml), (22)

where mI is the number of independent uncertain parameters, and m D is the number of dependent uncertain parameters

that must be added. The uncertain independent parameters are those defined in G(s,5). However, as discussed
previously, the dependent uncertain parameters are those independent parameters that must be repeated due to non-
multilinear terms in the transfer function coefficients and/or pairs of uncertain real poles or zeros that cannot be

cascaded. Thus, for A to be minimal, m D (or _SD) should be minimized. It can be shown that if the system transfer

function is formed from a given minimal M-A model of an uncertain system, the coefficients of the numerator and
denominator polynomials will be multilinear functions of the uncertain parameters. Unfortunately, the converse is not
necessarily true in general because of the dependence of the M-A model on the realization used for the plant. If the
general cascade-form realization posed in this paper is used, however, the multilinear form of the transfer function
coefficients can be used to establish that m = m I (i.e., ml) = 0), unless there are real uncertain pairs of poles or zeros

that cannot be cascaded. Furthermore, it can be shown that if the coefficients of all the f_tors of the numerator and

denominator polynomials are multilinear functions, then the coefficients of the expanded polynomials will also be
multilinear. However, if there are non-multilinear uncertain terms in the transfer function, then dependent parameters
must be defined (and added to A) to represent the non-multilinear term in a multilinear form. Moreover, if the non-

multilinear term is of the form 8n, then n-1 dependent parameters must be defined. If there are pairs of real uncertain

poles or zeros that cannot be cascaded, then one additional dependent parameter must be added for each pair, and the
dependent parameter can be either of the uncertain real parameters in the pair. Therefore, the number m, as determined
by these rules, is the minimal dimension of the A matrix for the uncertainty class considered in this paper. Once this
minimal dimension is determined, the A matrix can be defined as a diagonal matrix, as in (3), with the specified

uncertain parameters on the main diagonal. Examples which illustrate these cases will be presented later in Section 6.

5.2.2 State-Space Realization of M(s)

Once the cascade-form realization has been determined, the system can be modeled as in (1) and (2), where

[AA], [z_B], [AC], and [ZkD] are known functions of the uncertain parameters. Since any non-multilinear terms have
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beenredef'medinamultilinearformwhentheminimalA matrix is determined, these matrices are multilinear functions

of the parameters. In order to obtain a state-space model for M(s) as defined in (5), expressions for these uncertainty

matrices must be determined in terms of the matrices Bxp, Cqx, Dqp, Dqu, and Dyp from the model. Using (4) and
(5), these expressions are determined as follows:

[AA] = Bxp [A ]( I - Dqp [A ])-1 Cq x = Bx p ( I - [A ] Dqp )-1 [A ] Cqx

[AB] = Bxp[A](I-Dqp[A])-lDq u = Bx p(I.[A]Dqp)-l[A]Dqu

[AC] = Dyp[A](I-Dqp[A])'lCq x = Dyp(I-[A]Dqp)'l[A]Cqx

[AD] = Dyp[A](I-Dqp[A])-lDq u = Dyp(I-[A]Dqp)'l[A]Dqu

(23)

The inverse term makes computation of Dqp very difficult. Furthermore, the matrix inversion can cause [AA], [AB],
[AC], and [AD] to have fractional (i.e., rational) elements with uncertain parameters in the denominator, which is not
allowed in the uncertainty class being considered. Thus, it is desirable to represent this term in expanded form as
follows:

(I-[A]Dqp) -1 = I + [A] Dqp + ([A]Dqp) 2 + ([A]Dqp) 3 + ...

where the latter form in (23) has been assumed. Then the above equations can be rewritten as:

(24)

[AA] = Bxp[A]Cqx+Bxp{[A]Dqp+([A]Dqp)2 +([A]Dqp)3 + ... } [A]Cqx

[AB] Bxp [A ] Dqu + Bxp { [A ] Dqp + ( [A ] Dqp )2 + ( [A ] Dqp )3 + } [A ] Dqu

[AC] = Dyp[A]Cqx+Dyp{[A]Dqp+([A]Dqp)2 +([A]Dqp)3 + ... }[A]Cqx

[AD] Dyp [A ] Dqu + Dyp { [A ] Dqp + ( [A ] Dqp )2 + ( [A ] Dqp )3 + } [A ] Dqu

(25)

The second group of terms add in the cross-terms of the multilinear uncertainty functions. Each term in the series adds
a higher-order cross-product term. Since [AA], [AB], [AC], and lAD] are multilinear functions with a f'mite number of

terms, the Dqp matrix can be def'med to have a special nilpotent structure such that:

Dqpr+l = 0 (26)

and: (I-[A]Dqp)'l = I + [A]Dqp + ([A]Dqp)2 + ... ([A]Dqp)r (27)

where r is the order of the highest cross-term occuring in [AA], [AB], [AC], and [AD], i.e.:

r = max ( OA, OB, OC, O D ) (28)

where O A, O B, O C, and O D represent the order of the highest-order cross-product term in [AA], [AB], [AC], and [AD],

respectively. Cross-product term order is def'med as:

order(818 2 8 3...8 i) = i-I (29)

where i = 1, 2 ..... m. Thus, the maximum value of r is rma x = m-l, where m is the dimension of the A matrix.

The required structure for Dqp to satisfy (26) and (27) is given as follows:

1.) dii = 0; i--1,2 ..... m

2.) If dij _ 0, then for i=1,2 ..... m and j=l,2 ..... m: (30)

a.) dji ffi 0;

b.) di_l,jO 1 = 0 or di_2,jO 2 = 0 or ... or di_(m.1)j_(m_l) = 0

where the symbol "_" represents "modulo m" addition. The desired equations can therefore be written as:
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[AA] = Bxp[A]Cqx+Bxp{[A]Dqp + ([A]Dqp)2 + ...
[AB] = Bxp[A]Dqu +Bxp{ [A]Dqp + ([A]Dqp)2 + ...
[AC]= Dyp[A]Cqx+Dyp{ [A]Dqp + ([A]Dqp)2 + ...
[AD]= Dyp[A]Dqu+Dyp{ [A]Dqp + ([A]Dqp)2 + ...

([A]Dqp)r) [A]Cqx
( [A] Dqp )r } [A ] Dqu

( [A ] Dqp )r } [A ] Cqx

( [A ] Dqp )r } [A ] Dqu

(31)

where "r" is defined in (28). Since the [AA], [AB], [AC], and [AD] matrices are known for the given system, the

equations in (31) are used to determine Bxp, Cqx, Dqu, Dyp, and Dqp. Once these matrices are obtained, the state-
space model of M(s) is found. Hence, a minimal M-A model has been formed.

A procedure which summarizes the necessary steps in obtaining a minimal M-A model using these results is

presented next.

6. _ummarv of Procedure

The following is a summary of the procedure implied by the above proposed approach for forming a minimal

M-A model of a given uncertain system:

i.) Obtain the system transfer function in factored form. The coefficients of each factor should be a multilinear
function of the uncertain parameters. If necessary, defme new dependent parameters to represent any non-
multilinear terms in a multilinear form.

ii.) Define the number of parameters in the A matrix, m, using (22). In so doing, determine if any new parameters
are required to model inseparable uncertain real pole or zero pairs. If there are inseparable real pairs, either
uncertain parameter in the pair may be repeated.

iii.) Define the minimal A matrix as in (3), using the independent parameters defined in the given transfer function
as well as those defined in steps i.) and ii.) above.

iv.) Obtain a cascade-form realization for the system as a function of the uncertain parameters.

v.) Express the system matrices as in (2).

vi.) Determine the maximum order of cross-product terms, r, in [AA], [AB], [AC], and [AD] as defined by (28) and

(29). Then [AA], [AB], [AC], and lAD] have the form represented in (31), where Dqp has the special

(nilpotent) slxucmre summarized by (30).

vii.) Express [AA], [AB], [AC], and [AD] as:

[AA] = [AA o] + [AA 1] + [AA 2] + ... + [AA r]

lAB] = lAB o] + [AB 1] + lAB 2] + ... + [ABr]

[AC] = [aC o] + [AC 1] + [aC 2] + ... + [ACr]

[AD] = [AD o ] + [AD 1] + [AD 2] + ... + [ADr]

(32)

where the subscript i represents the cross-terms of ith order in each uncertainty malrix.

viii.) The Bxp, Cqx, Dyp, and Dqu matrices are found using the expansion described in [26] for the uncertainty
matrices having zero-order cross-product texms; i.e. define:

M =[AAo ABo] = M181 + M2_ 2 +-.. + Mm_n
ACo ADo (33)

where the M i matrices are appropriately partitioned. For the case of repeated parameters due to inseparable real

poles or zeros, the M i matrix associated with the repeated parameter must be no_ero. These maa-ices can be

decomposed into the product of appropriately partitioned column and row matrices as follows:
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Mi = [ MBi][ M_. MDa]Mthi (34)

where MBi forms the i th column of Bxp, MD1 i forms the ith column of Dyp, MCi forms the i th column of

Cqx, and MD2 i forms the ith column of Dqu. Thus:

Bxp = [ MBI MB2 "-- MBm]

Dyp = [ MDI1 MD12 "'" MDlm]

CqxT= [ T ..
DquT= [ MD2, T MI_ T ... MIni T

(35)

ix.) Use the higher-order cross-terms of [AA], [AB], [AC], and [AD], as in (32), to determine the elements of the

Dqp matrix. Begin with the first-order terms and specify as many elements as possible. Continue with the

second-order terms, and proceed until all elements of Dqp are specified. Check Dqp to ensure that the required
special structure of (30) and, hence, (26) is satisfied.

x.) Form the minimal M-A model as given in (3), (5) and (6), and as pictured in Figure 1.

It should be noted that the matrices MBi, MCi, MDli, and MD2i, obtained in decomposing the M i matrices

in (34), are not necessarily unique. A method of formalizing Ibis decomposition for computer implementation will
not be addressed in this paper. However, an algorithm is presented in [35] which accomplishes this decomposition for
a more restrictive uncertainty class. Some examples will be given next to illustrate these results.

7._

The following examples illustrate the proposed procedure presented above. Due to space limitations, details
of each step will not be included. However, the results that are presented for each example should be fairly easily
obtained.

Example 7.1

Consider the following uncertain system:

G(s,_5)
(91s+[_2)(_3s+_4)(blS 2 + b2s + b3)

(S + ¢X1)(S + 0_2)(S 2 + al S + a2)

where: ct 1 = Otlo+SCt 1 , ot2 = Ct2o+_iot 2 , al = alo+Sa 1 , a2 = a2o+fia 2

111 = 1]1o+8_1 , I]2 = 112o+_i1] 2 , I]3 = IB3o+81] 3 , _4 = 114o+_51] 4

b 1 = blo+_Sbl , b2 = b2o+fib 2 , b3 = b3o+Sb3

The cascade-form realization of this example is found in a straight-forward manner to be:

m __

-Or1 0 0 0 1

_2-a11]l -a2 0 0 l0 0 0 1 :

_3(112-0t11]1) 114-a2113 -a2 -al

B

1

111

0

111113
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This example illustrates the case of an inseparable uncertain real pole pair. Consider the following system:

G(s,5) = blS 2 + b2s + b3

(s + 00(s + 02)

where: b 1 = bl o+Sb 1 , b2 = b2 o+Sb 2 , b3 = b3o+Sb 3

01 = 01o+801 , 02 = 02o+502

Since the numerator is second order with uncertain coefficients, the uncertain real poles in the denominator cannot be
separated into the real cascade form. The denominator must therefore be expanded, and the complex (second-order)

B°[o]1

block used in the realization, which is given as follows:

1]
-0_02 -(01+02)

C = [ (b3- 0102bl) (b2- (01+02)bl)] , D = [bl]

Since there is one inseparable uncertain pair of poles, either 501 or _02 must be repeated in the A matrix. (It can be

shown that if this is not done, Dqp will not have the required structure and hence the higher-order cross-product terms
will not be modeled correctly.) Since there are no non-multilinear terms in any of the transfer function coefficients,
m = 6 (i.e., five given independent uncertain parameters plus one dependent parameter for the inseparable pole pair).
The resulting A matrix can therefore be deemed as follows:

A = diag [ 501,501,502, 5bl, 562, 5b3 ]

where 501 was arbitrarily chosen to be repeated. Using the proposed procedure, the following results are obtained:

Bxp = [0_1-10-10 00 00 0]0 ' Dyp = [-blo-blo-blo-1 1 1]

Cqx _-

020 0

0 1

01o 1

01o02o (01o+02o)

0 1

1 0

, Dqu =

0 "3

0 I

°I-1

0
0

D_

0 0 0

0 0 0

1/82o 0 0

1 1 1

0 0 0

0 0 0

0

0
0
0

0

0

0

0

0
0

0

0

0

0

0

0

0

0
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Thisexampleillustratesthecaseofnon-multilineartermsin the transfer function. Consider the second-order
uncertain system:

G(s,8) =
s2 + 2os + co2 where: o-- o + 8 co = co + 8

' 0 1_ ' 0

This is a second-order system with uncertain complex poles. The uncertainty appears in the real and imaginary

components of the complex poles. The constant coefficient, (02, is not a multilinear function of the uncertain
parameters. Substituting for o and coin the above transfer function yields the following equation:

2)ys2y = u - 20o sy - ¢Oo2y - 28o.sy - ( 2COo$co+ 8o)

In forming an M-A model, the problematic term is 80)2 because it is not multilinear. In order to represent this

equation in multilinear form, the following dependent variable is defined:

sotha_ s2y = u - 2OoSY -COo2Y - 2_osy - (2C0o8co+8_3)Y

Then the following equations can be defined:

ql = -2 sy Pl = 80 ql

q2 = y P2 8o) q2

q3 = -2 to° y + P2 P3 83 q3

Thus: s2y = u - 20 0 sy - COo2Y + Pl + P3

The realization of M(s) for the resulting M-A model can be depicted as follows:

[ 1[pl]I ll 0 Xl+00o  
L]g2 -0_ -20o x2 1 0 1 P3

I] IO ]II [°°°][ql -2 Xl + 0 0 0 P2
q2 = 0 x2
q3 2_ 0 0 1 0 P3

- 0

[x,]Y =[1 0] x2

+I0]1
U

The A matrix is given by A = diag [ 80 , 8(o, 83 ], where 83 = 8c0.

These examples illustrate the proposed procedure for forming a minimal M-A model of an uncertain system.
Although all the steps involved in obtaining these results have not been included, the stated results should provide a
guide in performing the steps of the proposed procedure. It should be noted that, for ease of hand computation, the
examples included only the simplistic (and less realistic) case in which the coefficients themselves are the uncertain
parameters. However, it is emphasized that the proposed procedure does handle the more realistic case in which the
uncertain transfer function coefficients are multilinear functions of the uncertain parameters.
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8. Concludin_ Remarks

This paper has presented a proposed procedure for forming a minimal M-A model of an uncertain system
given its transfer function in terms of the uncertain parameters. The uncertainty class considered in this paper allows
the transfer function coefficients to be multilinear functions of the uncertain parameters, and the uncertainties may arise
in the A, B, C, and D matrices of the system model. The proposed procedure involves realizing the system in a
cascade form, determining the minimal A matrix of uncertain parameters, and obtaining a state-space model for the
nominal system, M(s). Three examples were given to illustrate the proposed procedure. The first example had eleven
independent uncertain parameters, which arose in the A, B, C, and D matrices of the system realization. The second
example had uncertain parameters arising in the A, C, and D matrices only. This example illustrated the formulation
of a minimal M-A model for a system with inseparable real uncertain poles, and involved repeating an uncertain
parameter in the A matrix. The last example had uncertainty in the A matrix only, and illustrated a method for
handling non-multilinear terms.

Further work on the proposed procedure will be to include systems having a nonmonic characteristic

polynomial with an uncertain leading coefficient, as well as systems having an inner feedback loop which may or may
not have uncertainties. The latter case may require a modification in the formulation of the cascade realization.
Although the procedure presented in this paper is for SISO systems, an extension to MIMO systems will be
forthcoming, and should primarily involve modifying the cascade-form realization. Other areas of future work include
development of a simple means of verifying the minimality of a given M-A model, and development of a method of
reducing a nonminimal M-A model to a minimal form.
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Abstract

The Space Station Attitude Control System software test-bed provides a

rigorous environment for the design, development and functional

verification of GN & C algorithms and software. All Space Station systems

and sub-systems that are controlled or monitored by the GN & C software

are simulated. The simulation presents a major computational challenge,

starting from the simulation of full nonlinear flexible body dynamics

including the orbital environment and Mobile Servicing System (MSS)

operations, to task scheduling, sensor dynamics and inter-module
communication. In addition, the complex tasks of providing flight algorithm

sequencing and control and input command validation needs to be

addressed.

This paper describes the approach taken for the simulation of the

vehicle dynamics and environmental models using a computationally

efficient algorithm. The simulation includes capabilities for

docking/berthing dynamics, prescribed motion dynamics associated with
the Mobile Remote Manipulator System (MRMS) and microgravity

disturbances. The vehicle dynamics module interfaces with the test-bed

through the centroal Communicator facility which is in turn driven by the

Station Control Simulator (SCS) Executive. The Communicator addresses

issues such as the interface between the discrete flight software and the

continuous vehicle dynamics, and multi-programming aspects such as the

complex flow of control in real-time programs. Combined with the flight

software and redundancy m_nagement modules, the facility provides a

flexible, user-oriented simulation platform.
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Abstract

Powell's noldinear programming code, VF02AD, has been used to generate approximate

minimum-time tip trajectories for 2-1ink semi-rigid and flexible manipulator movements in the

horizontal plane. Tile manipulator is modeled with an efficient finite-element scheme for an n-link,

m-joint system with horizontal-plane bending oldy. Constraints on the trajectory include bound-

ary conditions on position and energy for a rest-to-rest maneuver, straight-fine tracking between

boundary positions, and motor torque Unfits. Trajectory comparisons utilize a change in the link

stiffness, El, to transition from the semi-rigid to flexible case. Results show the level of compliance

necessary to excite significant modal behavior. Quiescence of the final configuration is examined

with the finite-element model.

Introduction

Trajectory planning is essential in budgeting a maltipulator's actuator efforts to maximize

productivity. For repetitive tasks, the minimum-time maneuver goes hand-in-hand with this goal.

A variety of approaches have been advanced for rigid manipulator control, taking advantage of the
fact that all or some of the controls take tlle form of switching functions between actuator bounds.

Bobrow [1] used an intuitive approach to generate optimal switching controls, as well as proving
the boundedness of the controls. Weinreb and Meier [2][3] used calculus of variations approaches

to incorporate control bounds in the problem formulation. In a second study, Bobrow [4] used

numerical optimization to generate spfine fits to the switching controls.

Switching functions do not lend themselves to maintaining tip accuracy for non-rigid struc-

tures. One would hope that the applied controls do take advantage of the bomlds to maximize

performance, but a clear analytical directive for this does not exist at the present.

In filling this void, parameter optimization techniques can provide approximate optimal perfor-
mance solutions for systems driven by complex, highly nonlinear dynamic models with arbitrary

equality or inequality constraints. Of these solution techniques, Powell's Recursive Quadratic Pro-

gramming algorithm [5], embodied in the code VF02AD, has proven to be a robust tool for a variety

of aerospace applications [6][7][8], and will be used in this study. The primary drawback to this or

other numerical optimization methods is the dependancy on accurate gradient approximations of

the performance index and constraints with respect to the parameters.

The ensuing discussion initially describes the structural dynanfics model of the manipulator,

followed by the optimal control problem and parameterization of the controls, and ends with the

results of a computational experiment.

The manipulator structure modeled in this study, and presently under fabrication, is a 2-1ink

cantilever arrangement constrained to slew in the horizontal plane. Tall, thin finks are used to

tMembers of the Technical Staff, Enghteerhlg Analysis Department
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minimize vertical plane droop. The hub or joint-1 actuator slews both links, an interliItk motor,
and tip payload. The intetlizLk or joint-2 actuator located at the end of link-1 slews the second

link and the tip payload. Tile joint-I/joint-2 actuator torque ratio is about 4/1. The complete

manipulator is about 0.5 meters (m) tall mid 1.2m long.

The Structural Model

There is a long literature discussing tile difficulties of simulating the vibrations of rotating

structures[91 [10] [11]. The problem seems to arise from kinematics that are of second order impor-

tance in nonrotating problems, but become of first order importance in the presence of rotational

accelerations. Additonally, there are constraints iulmrent to the flexible link problem which must

be satisfied: motions occur entirely in a horizontal plane; one end of the chain of links is attached

to a stationary hub; and each flexible link is inextensible. These considerations motivate the de-

velopment of a mathematical model that faithfully carries the full kinematics of the problem. It is
also necessary to devise such a model in a form that will lend itself to real-time calculations.

The need to meet these apparently conflicting demands motivated the development of a model

specialized to flexible, multilhtk structures. That apparently successful strategy is outlined below.

The full kinematics are retained by expressing the configuration as functions of convected coordi-

nates. This is a traditional approach in noxdinear elasticitity [12]. Further, the kinematic variables

are selected so that all geometric constraints (fixed hub, planar motion, and non-extension) are
automatically satisfied.

Since motions are assumed to occur entirely in a plane, it is also assumed that the elastic lines

of the links as well as the mass centers of the cross sections all lie in the same plane. Each cross
section is identified by its arc-length distance from the hub, so that the orientation of the center of
the cross section s at time t is

/9(s, t) = cos(O(s, t))_'+ sin(O(s,t))_

The location of the center of cross section s at time t is obtained by integration of the above unit
tangent vector:

_(s, t) = f0 /_(a', t)da'

Similarly, the velocity at the cross section s at time t is obtained by integration of the time derivative
of _(s, t):

_(_, t) = r" o(_,, t )'_( sI, t)ds'
,Io

where

"_(s,t) = -sin(O(s,t))_+ cos(O(s,t))f

The above description of configuration - entirely in terms of O(s, t) - causes all of the geometrical

constraints to be satisfied automatically. Additionally, the above description expresses the configu-

ration in terms of one unknown field (0), instead of the more conventional two or three fields (z, 9,
_:0).

The governing equations of the dynamics are derived using those kinematics and a frame-

invariantvariationalmethod -Hamilton's principle.A finiteelement discretizationisused to cast

the resultingintegro-differentialequationsforO(s,t)and itsfirstand second derivativesintoa sys-

tem of fully-coupled,nonlinearalgebraicequations.Particularlyimportaaltfor the applicationat

hand isthe observationthatsinceallspatialintegralsare with respectto the convectedcoordinate,

8, those integralsare configuration-independentand need be done only once. The nonlinearities
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remain, and a new nonlinear system must be solved at each time step, but tile time consum-

ing quadrature process can be done in advance of the dynamics simulation. These features are

illuminated below through derivation.

Hamilton's principle is that

t2 [KE(t') - SE(t') + WE(t')] dt' = 0 (1)

where KE is kinetic energy, SE is strain energy, and WE is external work. Quantities associated

with the end times, tl and t_ have to do with initial attd final conditions and the conservation

of momenta, but the governing equations necessary to model motion of the flexible structure are

obtained by consideration of the integrand alone:

6KE(t) - _SE(t) + 6WE(t) = 0 (2)

for all tl < t < t2.

The kinetic energy is that of the flexible links plus that of all concentrated masses and concen-
trated moments of inertia:

1 fo L 1 masses 1• +KE(t)= _ p(s)_(s,t) _(s,t)ds+ _ _ Mh#(sh,t). :*
k=l

The strain energy is that of the flexible lilrks:

inertias

hO(st, t)'O(st, t)
l=1

1/f
Discretizationof the above energy terms isobtained by discretizingthe tangent vectorffas:

nodem

n=l

where the shape functions, Pn, have support over intervals that are small relative to the anticipated

radii of curvature. The above condition on the support of the basis functions is necessary to assure

compliance with the condition of nonextension. The resulting energies are:

and

where

nodes nodes1
Om(t)O,,(t)%_,(t) . "_,(t)Mm.n (3)KE(t)= _ y_ y_ " " -"

m=l n=l

1 nodes nodes

SE(t) = 2 _ _ _m(t)" _n(t) Km,n
m=l n----1

(4)

L masses inertias

Mm,n = fo O(s)qm(s)qn(s)ds + _ Mkqm(sk)q,,(Sk) + _ II_g(l,m)_K(l,n) ,
k=l l=l

fo" foqm(s) = pm(_)d_, Km,,, = tc(s)p_(s)p'(s)ds,

5K is the Kronecker delta function, _ is a dummy variable, and iffm,n are spatial derivatives.
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After appropriate integration by parts, tile integrand of equation 2 becomes:

_ode j

,50m(-_,,,(t)._,,(t)M,,,,,,-'r',,,(t)._,,(t)K,,,.,,+ -Tin(t)•e,(t)6K(m,n) ) -- 0 (s)

for all nodes rn. In tile above equation, rn is the external torque applied at node n. After _n(t) is

expanded:

_.(t) " "= 0.(t)_n(t) + (_.(t))2_.(t)

and Equation 5 is invoked for all 60m, a complete set of nodes second order equations in the nodes

mlknowns, O,, results as follows:

i_)deo

7_(t). T.(t)#.(t)_..,. - 7_(t). _.(t)Cb_(t))2_I.,. + 7_(t). _.(t)Km,. = 7_(t). era(t) (e)
n=l

Tile above problem formulation, involving only one unknown field, automatically satisfying all

constraints, and requiring only one evaluation of element mass and stiffness matrices, lends itself

to rapid numerical calculation. A computer code to generate and solve the above described system

of equations for each time step has been written, tested and used by VF02AD. Both the derivation

and code mentioned above are described more fully in ReL [13].

One particularly interesting calcnlation, discussed in the literature as being difficult to solve, is

that of a beam accelerated around a hub to an angular frequency above the first bending frequency

of the beam. This is a particularly stringent test of flexible-dynamics codes, testing numerical

robustness, as well as the correctness of the physics. Figure 1 shows the motion of the tip of such a
flexible beam relative to the tip of a rigid beam rotating at the hub velocity, hfitially, the flexible

beam lags its rigid counterpart; it then overtakes and oscillates about the rigid beam. These results

are in near exact agreement with the results presented in [9], obtained from a much more complex

model.

Optimal Trajectory Shaping

The principle goal in this study is to combine the physics of the structure with optimiza-

tion techniques to generate actuator torque ldstories for accomplishing a useful task with minimal

degradation in performance. A secondary objective is to shortcut the work of an eventual feedback

controller, which will be needed to compensate for modeling errors.

Looking towards maximizing produ.ctivity in some repetitive task, a minimum-time tip tra-

jectory was chosen for investigation. Constraints on such a trajectory include: completing a

rest-to-rest maneuver, tracking a specified path (z(t), y(t))tip, slewing between specified endpoints

[(z(to),y(to)), (z(tj),ll(tj))]tip, and not exceeding actuator torque limits T1,2,,t. •

The configuration initially starts at rest. Driving a flexible structure to rest at the final time,

tj, necessitates end constraints on both kinetic and potential or strain energies (KE(ty), SE(ty)).
The chosen path is a straight line and actuator torques limits are constants. The problem can be
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restated as

minindze:

subject to:

constrained by:

J=t t

- finite element model

- input actuator torques, rl,2(t)
- known initial conditions

ztip(t/)- ¢,pecl/ied( t / )

y,,(ts) - y. c S,.d(tj)
Ci(ty ) f_t [ytip(ztlp(t)) - yllne(ztip(t))]dt = 0

= KS(t/) =

SE(tj) =
f0t (In(t)l - In,...I)dt <

j=a., f_' (l'r2(t)[ - Ir2.,..I) dt <

Note that the equality tracking constraint, C3, and inequality torque constraints, Ce, Cr, are for-

mulated as integrals. In addition, equality constraints on energy are point constraints. Both of

these items will have profotmd effects on the example trajectories to be generated.

Parameterization of the Controls

To approximate optimum system performance from the aforementioned structural model, a

suitable parameterization of the controls, rl,2(t), is necessary. The choice of "parameterizable "

torque functions is essentially limitless. For this study, the simplest case of using tabular values of

torque, _'/, as parameters at equal-spaced fixed times, tl, for both joints was chosen, or

rl(ti),r2(ti), i= 1, n 0 < ti < ty,

which results in 2n control paranteters.

However, since the final time is changing due to mildmization, the loss of control history def-

inition would result if the times at which the control parameters are defined remain fixed in an

absolute sense. To correct this, 7"1,2were specified at equally-spaced, nondimensional node points,

_i : ti/tt, where

rl(_i),_'2(_i), i = 1, n 0 < _i < 1,

This allows the torque histories to "stretch" naturally over the trajectory length. Using this mod-

ification, it is necessary to add t/as a parameter also, resulting in 2n + 1 control parameters to be
fotmd.

Numerical derivatives of the performance index, tt, and the constraints, Cj(t/), provided to

VF02AD are central finite-difference approximations. To generate derivatives with respect to a

torque parameter, T1,2_ : th,2(tl), the parameter is perturbed equidistant about its nominal value,
and complete trajectories (or integrations of the structural equations) are computed to the current

nominal t/ to produce perturbed Cj(t/) values. Since derivatives are computed over the current

fized t/, the derivatives, Ot//Or_,2_ = 0, and only the derivatives, #Ci(tf)/O_h,2 , _ O. Naturally

both t/, Cj(t/) gradients with respect to t/, evaluated over the current nominal torque histories,

are nonzero, (where cgt//cgt I : 1.).

Results

The following finite-element structural model was used for the manipulator to produce the
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sample trajectories.

ITEM

joint-Ibracket
link-1

Istjoint-2bracket +

joint-2

2nd joint-2bracket

link2

Totals:

COMPOSITION

1 element

3 elements

1 element +

1 point mass

1 element

3 elements

9 elements

LENGTH

(m)
.0635

.5040

.1070

.1040

.4890

1.2675

MASS

(kg)
.545

.640

5.415

.830

.313

7.743

STIFFNESS, E1

(newton-m 2)
l0 B

102,103
10s

The two values of stiffness, EI, for links 1,2 represent the trajectory comparison for this study.

The brackets, modeled with a stiffness of 105, are considered rigid. Point moments of inertia were

used to define mass distribution for the brackets. No payload was used in this comparison. The

joints were assumed to have no compliance or damping.

The two trajectories, computed on a CRAY-XMP, were integrated for 100 time steps, where

At = .01t 1. Trajectory evaluations for gradient computations executed in 0.75 secs. The torque

histories for each joint were composed of 21 tabular values, where A( : .05. Torque bounds were

chosen as ±16, ±4 newton-m (n-m) for joints 1 mid 2. The path to be tracked for this study was

the line connecting (z, y) pairs, (0.0,1.13) and (1.13,0.0). A composite of the slew motion for the

"flexible" case (Elli_, = 100 newtons-m 2) is given in Fig.2. The parameterized torque histories

that created this slew represent 100 iterations of VF02AD after initialization with the parameter

solution values from the "semi-rigid" case (Elti,_, = 1000 n-m2). The tip path traced is reasonably

straight, but does contain some small ripples - a result of the integral stateraent of the tracking

constraint, Ca(t!).

Figure 3 graphically depicts the difference between the semi-rigid and flexible links. Shown

is the angular velocity of the finite-element node adjacent to joint 1. The frequency of vibration

for Elu,k° = 100 is about 19 hz. From examination of Fast Fourier transforms (FFTs) of the

finite-element output of the system disturbed about the initial, midtlme, and final positions, this

appears to be one of the lower modes. Note the low angular velocity of the semi-rigid system after

t/t/ : 0.9, implying that a significant amount of time is being expended in order to bring the

system to "rest". This phenomena is definitely at odds with purely rigid system behavior. The

KE(tt) : 0 constraint imposes a zero final m_gular velocity in both cases. Also, note that ty for the

flexible case is slightly greater than the semi-rigid one. This demonstrates the approximate nature

of the solutions, insofar as the semi-rigid solution not converging as well.

Fig.4 shows the 1-1profiles. These still retain some of the boundedness qualities of purely rigid

comfigurations. However, they begin and end near zero instead of the bounds (:t:16 n-m), and the

transition between bounds is comparitively gradual. The oscillatory behavior in the EIz_,,h, = 100

torque is probably counteracting the excitement of the lowest structural modes, which would have

the greatest impact on the position constraints. Note the abruptness of the controls near the end

in an attempt to quiet the structure. The 1"2 torques in Fig.5 show minimal activity for most of

the trajectory, except close to the end in order to accomplish the rest state. Note that this closing
maneuver starts sooner with the more flexible link structure.

The straight-line tracking error in millimeters (ram) is shown in Fig.6. Both torque histories

appear to limit the error to ±5 mm except near the end of the Ell_° : 1000 trajectory, where

the error momentarily "escapes" before returning to zero to satisfy the end position constraints,

(Cl(tl), C2(t1)). One drawback to the integral formulation is that it can relax tracking performance

in isolated parts of the trajectory, yet yield a reasonably low residual (.._ 0) for C3(t]). It may be
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necessary to add interior point constraints to significantly decrease this error. A less complex

alternative is to reduce the Eltink, more gradually between solutions, in the fashion of a homotopy

scheme, until tile desired value is reached.

The kinetic energy of the flexible structure at peak rates (t/t t _ 0.45) is, not surprisingly,

higher than the semi-rigid one as shown in Fig.?. It is interesting that KE appears to be devoid of

oscillatory behavior in both cases. Note again, the rest phase of the trajectories above t/t! : 0.9.

Strain energy is shown in Fig.8. This again displays the contrast first seen in Fig.3. The semi-rigid

structure produces relatively little strain, while the flexible-link configuration again contains the

19 hz mode with a sizable increase in energy magnitude. Note the peaks in both cases, mirroring

the sharp _-1 changes in Fig.4. Also, note the enforcement of the SE(tl) : 0 point constrahlt at the

end. The SE "floor" in both cases corresponds to the KE peaks in Fig.7.

Tlle finite-element model was also able to examine the quiescence of the final state. At t I, joint

node accelerations can be zeroed and joint node positions fixed at their nominal final values. The

corresponding torques applied to maintain these values can then be computed. Fig.9 shows the

residual rl being applied after the approximate optimal t! = 1.505 secs for Eltlnk, = 100 has been

reached. The oscillations in this residual appear to contain frequencies in the vicinity of 2.5 and 35

hz. The lower appears to correspond to a fixed-free mode of the first link with the remainder of the

system mass concentrated at the end. This mode was not seen during the optimized part of this

trajectory. The second frequency may be a higher harmonic of the mode seen earlier, or possibly

a numerical artifact. The small magnitude of this residual coupled with the spacing of the modes

may be ideal targets for attack by a linear feedback control scheme. As an open-loop alternative,

augmenting the tabular torque controls with frequency-based, parameterized functionals may be

sufficient to suppress these oscillations.

Conclusions

A robust, parameter optimization tool has been able to generate actuator torque histories

for approximate, minimum-time slewing maneuvers containing a variety of continuous and point

constraints for a 2-1ink flexible manipulator. The parameters, or actuator torques, for each link

were tabular values at fixed node points during the maneuver. Perturbations were made to each

parameter to approximate final time and constraint gradients. The efficient formulation of the

finite-element model made the numerical optimization procedure n realistic endeavor.

The accuracy of the straight-line tip tracking was good. Additional interior constraints and/or

a more gradual change in the stiffness should yield further improvements. For the trajectory used

in this study, joint-1 applied most of the input, which included cancelling lower-mode vibrations

for the structural as a whole. Energy constraints were effective in bringing the structure to rest at

t 1. It was also demonstrated that final energy constraints do not preclude vibrations during the

slew. The intended production use of the manipulator will dictate whether this is a hindrance or

not. Finally, the secondary goal of providing enough vibration control to maximize the success of

a linear feedback controller in treating residual oscillations appears feasible.
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ABSTRACT

Conventionally kinematical constraints in multibody systems are treated

similar to geometrical constraints and are modeled by constraint reaction

forces which are perpendicular to constraint surfaces. However, in

reality, one may want to achieve the desired kinematical conditions by

control forces having different directions in relation to the constraint

surfaces. In this paper the conventional equations of motion for multibody

systems subject to kinematical constraints are generalized by introducing
general direction control forces. Conditions for the selections of the

control force directions are also discussed. A redundant robotic system

subject to prescribed end-effector motion is analyzed to illustrate the

methods proposed.

I. INTRO(XI_ION

In many applications of multibody systems certain points are desired to
follow prescribed paths, such as the end-effector in a robotic system.

Such kinematical conditions are treated constraint equations to

determine the system motion and the control forces.

In this paper those constraints which arise from geometrical

restrictions such as closed loops and physical guides are termed

geometrical constraints. On the other hand, kinematical constraints are

defined as those conditions which represent desired motions or desired

paths of certain points or bodies.

In the conventional methods of analysis, regardless of the

fundamental dynamic equations (Newton-Euler, Lagrange, Kane, etc.) used,
the constraints are modeled by constraint reaction forces which are

perpendicular to the constraint surfaces. (See Arnold [I], Hemami and

Weimer [2], Kamman and Huston [3], Wehage and Hau9 [4], Nikravesh [5],

Kim and Vanderploe9 [13], Amirouche and Jia [6].)
However kinematical constraints do not have to be satisfied by

constraint reaction forces, and usually have to be realized by control

forces applied by the actuators in the system. Hence the conventional
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solution procedure imposes an arbitrary restriction to the directions of

the control forces. Depending on the places of the actuators in the system

one may want to achieve the desired kinematical conditions by control

forces having different directions in relation to the constraint surfaces.

In this paper the conventional equations of motion are generalized by

inroducing general direction control forces for kinematical constraints,

that replaces the constraint force representation. And the dynamic

equations for multibody systems subject to geometrical and kinematical
constraints are developed. By the proposed method of solution the control

forces and the system motion are solved simultaneously.

This paper is divided into five sections. After the introduction, the

second section outlines the conventional equations of motion for

constrained multibody systems. In the third section the general direction
control forces for kinematical constraints are introduced and the

conditions for the control force directions are discussed. In section four

simulations of a redundant manipulator by the conventional and the

proposed methods are presented.Conclusions form the last section.

2. OON_ENTIONAL EQiJATI(}NS OF NOTION

Consider a mechanical system where ql,...,qn are a set of generalized

coordinates chosen for convenience to specify the configuration of the

system. Let the system be subject to c constraints. Kane's equations for

an arbitrary system of particles and rigid bodies can be expressed as

(Kamman and Huston [3], Baumgarte [7]),

where

F* + F + Fc = 0 (1)

F_ - ki i=1,... ,c , p=l,... ,n (2)
_Yp

F*, F and Fc are the vectors of generalized inertia, external and

constraint forces respectively. In equation (2) ft=O, i=1,...,c are the

constraint equations in the acceleration level, hi are undetermined

multipliers, and yl,...,yn are the generalized speeds of the system chosen
for convenience as independent linear combinations of _p. The

tranformation between _p and yp, e.g. Euler angle derivatives and relative

angular velocity components can be expressed as

qh = Thp yp h,p=l,...,n (3)

where Thp are functions of qp (Kane and Levinson [8]).

The generalized inertia forces can be expressed in the following form

(Huston and Passarello [9]),
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F* = M _ + Q (4)

where M is the generalized mass matrix of the unconstrained system being

functions of qp, and Q contains the quadratic velocity terms.

The holonomic and nonholonomic constraint equations can be expressed
in the acceleration level as below

Bip yp - hi i=1, .... c (5)

In eq. (5) B is cxn constraint matrix, and Bip and hi are

functions of qp and yp.

Note that for holonomic constraints (_i(qp,t)-O,

Bip - _@_ Thp

_qh

and for velocity level nonholonomic constraints _Fi(qp,yp,t)-O,

Bip "" --
_)Yp

Then, using eq. (2), the generalized constraint forces are

in general

Fc = BT _, (6)

The undetermined multipliers Xi represent the restraining constraint

forces and moments generated by the constraints at the points of

application (Ider and Amirouche [11]).

Equations (I) and (5) represent the governing dynamical equations.

Combining these and making use of equations (4) and (6), we have

[: IIi]°] (7)

The accelerations obtained from eq. (7) are then used for numerical

integration for the time history of yp and, through the use of eq. (3),

the generalized coordinates qp.

Lagrange multipliers could be eliminated to reduce the equations for

computational efficiency. To this end let C represent a nx(n-c) matrix
which is orthogonal complement to B, obtained either by Singular value

decomposition (Singh and Likins [12]), Zero eigenvalue method (Kamman and

Huston [3]), Q-R decomposition (Kim and Vanderploeg [13], Amirouche and

Jia [6]), or row equivalence transformation (Ider and Amirouche [10]).

Premultiplying eq. (I) by CT yields

c'r(F*-F) -- 0 (8)

Combining equations (8) and (5) and utilizing eq. (4), we obtain the
reduced equations
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[CTMIB[CT  O]h (9)

Equations (9) and (3) form a set of 2n first order ordinary differential
equations that can be numerically integrated to obtain the time history of
yp and qp.

When relative joint coordinates are selected as the generalized
coordinates and the corresponding partial velocity vectors are developed
using recursive multibody kinematics (Huston and Passarello [9], Ider and
Amirouche [I0]), constraint equations for joint connections are

automatically eliminated. Hence, in this paper an open tree-like system

represents an unconstrained system where n is the total number ofthe free

joint degrees of freedom.

3. CONTROL FORCES FOR KINEI_TIC/E CONSTRAINTS

Now consider that a tree-like multobody system is subject to geometrical

and kinematical constraints. Kinematical constraints represent desired

motions or desired paths of certain points or bodies. They are the

conditions that have to be realized by the actuators in the system. The

desired motions could be specified at position, velocity or acceleration

levels and could be holonomic or nonholonomic.

Whether one uses Newton-Euler, Lagrange or Kane's equations or other

variations of these, in the conventional approach the constraints in the

system are modeled by constraint reaction forces which are perpendicular
to the constraint surfaces. In the case of geometrical constraints

perpendicular reaction forces at the application points are generated,

hence the above approach is necessary. On the other hand kinematical

constraints could be achieved by a number of alternative control forces

whose directions in the generalized space can be be selected by physical

considerations. Therefore the conventional equations of motion should be

generalized by considering general direction control forces for
kinematical constraints.

Consider c constraint equations (5), and let ci of the constraints in

the system be geometrical and the remaining c2 (c2=c-ci) be kinematical.

The constraint matrix B and the vector of constraint force magnitudes

can be partitioned such that

B = [B aT BKT] T (10)

and

X = [X GT XKT] T (11)

where Be is a clxn matrix, BK is a c2 matrix, XG is a cI dimensional

vector and XK is a cz dimensional vector.
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Addition of control forces to the equations of motion yields

M y + Q + BGT;kG + BKI";kK + AT M - F (12)

where A is a czxn control force matrix where each row represents the
direction of the control force for each kinematical constraint in the

generalized space, and M is c2 dimensional vector of control force

magnitudes. Now assume that the control force directions and magnitudes

are selected such that the restraining constraint forces _G become zero.
This leads to

M # + Q + BGT ,k,G + Arp = F (13)

Eq. (13) can be written in the following form

M y + Q + ZTV = F (14)

where Z is the augmented matrix of constraint and control force directions

Z = [B eT AT] T (15)

and is the vector of constraint and control force magnitudes,

V = [Xov _T]T (16)

Once the control force directions A are selected by physical
considerations eq. (14) needs to be solved together with eq. (5) to
determine the control force magnitudes simultaneously with the generalized
accelerations. Hence the augmented equations of motion are

["B0zT]l ]:h (17)

Alternatively the equations could be reduced in a manner similar to

Section 2. To this end, let O be a nx(n-c) matrix orthogonal complement to

Z. Premultiplying eq. (14) by 0T and augmenting with eq. (5) leads to

(18)

In the case when the reduced equations are used v can be obtained from eq.
(14) utilizing the computed accelerations, as

v = (Z ZT) -' Z (F-My-Q) (19)
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Note that A should be selected such that rank Z=c, because otherwise there

will be less than c2 control forces to control cz kinematical conditions.

The augmented equations have a solution if and only if the augmented
mass matrix is nonsingular, in which case the prescribed conditions are

achieved with the corresponding control forces. On the other hand if it is

not physically possible to realize the kinematical constraints with the
selected control force directions, this reveals itself as a singular ( or

near singular) augmented mass matrix. Therefore the condition for the

existence of solution could be expressed as follows: Directions A should

be chosen such that a linear combination of the rows of _TM should not be

a linear combination of the rows of B. In other words the vector space

spanned by the rows of OTM and the vector" space spanned by the rows of B
should be nonintersecting (except the zero vector). Since the dimension of

the vector space spanned by the rows of B is c, and that of _TM is n-c,

the possibilities for CTM are infinitely many (provided that n-c>O). Hence
one can construct various vector spaces for CTM by different selections of

the control force directions A. CTM that correspond to directions B is

only one of them.
For redundant systems, i.e. when c<n, it has been observed that one

usually has several physically meaningful control force directions to

satisfy the given kinematical conditions.
In the special case when A is selected such that its rows are linear

combinations of the rows of BK, then since C is the same as C in the

conventional model, y becomes the same as the conventional case and ZTv

becomes equal to BTX. However vi may be different than Xi depending on A.

Similarly for nonredundant systems, i.e. n=c, B is nxn, and rows of Z
are necessarily linear combinations of the rows of B. In this case C is

null matrix and the above procedure reduces to the conventional method

where ZTv is equal to BTX.
It should be noted that _TM and B may form nonintersecting vector

spaces even if CT and B do not. Hence realization of the prescribed
motions is possible even in the extreme case when a control force

direction is tangent to the corresponding constraint surface. This is due

to the inertia coupling between the generalized coordinates.

4. SIIIILkTIONS OF A REDUNDANT ROBOTIC SYSTEM

In the three link manipulator shown in Figure I,

system can be described by three generalized coordinates 81,

generalized speeds yp are defined as

yl : _1 , yz : 62 , y3 : 63

the configuration of the

e2, e3. The

The data used are LI=L2=L3=I.0m, m1=3Okg, m2=m3=18kg,

I2=I3=8.64 kg.m 2.
The end-effector (point A) is desired to move in

direction with a constant velocity vA.

the system are

II=I0 kg.m 2,

the horizontal

Hence the constraint equations in
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L 1.0 m

M 2

Figure I. Three ]ink manipulator

LlCl + LzClZ + L3c13 = vAt + 1.9088

LlSl + LzSlz + L3S13 - 0.9893
(20)

where cl=cosel, c12=cos(el+eZ), c13=cos(81+02+03), and similarly sl=sinel,
s12=sin(e,+e2), s_3:sin(el+ez+e3). At the acceleration level the

constraint equations are given by eq. (5) where B and h are

8 = [ L1Sl+Lzs12+Lss13

t L_ cl +Lzc_ z+L3c13
L2s12+L3s1 3 L3s13 ]
Lzcl 2+L3 Cl 3 L3Cl 3

(21)

and

h[Llsy12L2s12y1+y2,23sy+y2+y32j
-L1 Cl yl 2-L2Cl z (yl +y2 )2-L3 Cl 3 (yl +y2 +y3 )2

(22)

Initially the system is at the configuration 81=60 o, 82=-10 o,
B3=-90 °. The initial genera]ized speeds are y1=0.386 rad/sec, y2=0,
y3=-0.9618 rad/sec, which correspond to vA= -1 m/sec.
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First the system is simulated using the conventional method. The

generalized constraint forces can be expressed from equations (6) and (21)

aS,

F_

F_

X1 (LIs1+Lzs12+L3s13) + X2 (L1cl+LzClz+L3c13)

>_1 (LzSlz+L3s13) + 42 (L2c12+L3c13)

,_1 L3s13 + X2 L3c13

(23)

In particular we wish to determine joint moments denoted as Mi, i=1,2,3
that would achieve the desired kinematica] conditions. F_, i=1,2,3

represent the required joint moments. It is seen from eq. (23) that all

three joint moments are nonzero, i.e. motors are required at all three

joints.

Ae 4
(d._)

20 _ _ 1

0.5 1.0
! !

2

5

-20

-40

}

Figure 2. Displacements.

Conventiona| method " I. A81, 2. _e2, 3. Ae3

Control force method: 4. ABI, 5. AG2, 6. AG3
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Figure 3. Velocities.
Conventional method : 1. 91, 2. _z, 3. _3
Control force method: 4. 61, 5. e2, 6. e3

The simulation is perforn_.d for 1 sec., until the end effector moves
lm in -x direction. &et and 9t, i=1,2,3 are plotted in Figures 2 and 3
respectively. The joint moments Mr required to obtain the desired motion
of the end effector as obtained by the conventional method are shown in

Figure 4.
Second the system is resimulated by the proposed control force

approach. As an illustration the control force directions are selected
such that no moments are needed at the lower joint of link 1. The
correspondin9 control force directions are

A=[O 1 O]0 0 1
(24)

Note that since there are no geometrical constraints in this system, the
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Figure 4. Joint moments.
Conventional method : 1. M1, 2. M2, 3. M3
Control force method: 4. Mz, 5. M3

matrix Z is identical to A, and the vector v is identical to p. The
control forces ZTv are

ZTv

O
= I/1 1

0

0

V 1

I/2

(25)

Hence, in this case, the required joint moments for the prescribed end
effector motion are MI=O, Mz=Vl, M3=v2.

The augmented mass matrix was observed to be full rank as expected.
e_ and e_, i=1,2,3 for a simulation of I sec. are plotted in Fi9ures 2 and
3. The joint moments are plotted in Figure 4. Note that in this case a
motor is not needed at the lower joint of link I.
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Initial configuration

Figure 5. Final configurations: I. Conventiona]

method; 2. Control force method.

The system's motion differ in the above two approaches although in

both cases the end effector performs the same motion. The configurations
at t=1 sec. corresponding to the conventional model and the control force

model are shown in Figure 5.

5. COIICLUSIOIIS

This paper presented a general procedure for the dynamic modeling of
multibody systems subject to kinematical constraints. General direction

control forces have been introduced that replace the conventional

constraint reaction forces, hence increasing the ways of realization of

the prescribed motions. It is shown that the possible conrol force
directions are more than one, and the criteria for the existence of

solution have been presented.

The method proposed in this paper involves selecting the control

force directions in the generalized space by physical considerations, and

then solving their magnitudes simultaneously with the corresponding system

motion. As a result one can design alternative control forces that can be

applied by the actuators in the system. The method is expected to be

especially useful to control the extra degrees of freedom in systems that

have joint flexibility or joint clearance.
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ABS_CT

Control system design for general nonlinear flight dynamic models is con-

sidered through numerical simulation. The design is accomplished through a

numerical optimizer coupled with analysis of flight dynamic equations. In the

analysis, the general flight dynamic equations are numerically integrated and

dynamic characteristics are then identified from the dynamic response. The

design variables are determined iteratively by the optimizer to optimize a

prescribed objective function which is related to desired dynamic character-

istics. Generality of the method allows nonlinear effects of aerodynamics and

dynamic coupling to be considered in the design process. To demonstrate the

method, nonlinear simulation models for an F-5A and an F-16 configurations are

used to design dampers to satisfy specifications on flying qualities and con-

trol systems to prevent departure. The results indicate that the present

method is simple in formulation and effective in satisfying the design objec-

tives.

INTRODUCTION

At high angles of attack, the aerodynamic forces and moments are, in

general, time-dependent and nonlinear functions of motion variables. There-

fore, the traditional control system design method based on a llnearized

dynamic system are not appropriate. In addition, the aerodynamic, kinematic,

and inertial coupling phenomena are important to the high angle-of-attack

flight dynamics of modern aircraft. As a result, a number of high angle-of-

attack control concepts have emerged (refs. 1-4). Therefore, a suitable

control system design method must be capable of incorporating these coupling

phenomena with considerations of tlme-dependent, nonlinear aerodynamic forces

and moments. A control system designed without considering these coupling

phenomena often has a detrimental effect on the departure/spin resistance (ref.

5). Another feature of high-alpha control system is the simultaneous utili-

zation of several control surfaces or devices. Therefore, a design method

capable of handling multiple input and output is necessary. A current approach

to solving this problem is by extensive piloted simulation (ref. 5).

Methods in optimal control theory represent possible approaches to solving

these problems under consideration. These methods are derived through calculus

of variation. However, computational methods in existence require lineari-

zatlon of dynamic equations and aerodynamics about trimmed conditions (ref.

6). Another alternative is to apply numerical optimization techniques without

llnearlzatlon as they are frequently used in structural and aerodynamic designs

of large systems. A similar approach has also been used in other control

applications in ref. 7.
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In the present method, a numerical optimization technique based on conju-
gate gradients and feasible directions (ref. 8) is coupled with an analysis
method which is to obtain numerical solutions of the nonlinear six degree-of-

freedom dynamic equations. This analysis method is to provide information

needed in the design process, such as damping ratios, frequencies, motion vari-

ables involved in dynamic instabilities, etc. Since the analysis method can

deal with nonlinearities in the dynamics and the aerodynamics and with any

general constraints on the control system configuration, the control system

designed with a numerical optimization technique can be very realistic and

effective.

NUMERICAL APPROACHES

Typically, a control system may be designed to enhance flying qualities,

to prevent flight departure, and to have an effective maneuver control

system. To demonstrate the present method, only the first two objectives will

be considered. That is, one is to design dampers at a moderate angle of attack

to satisfy specifications on flying qualities and the other to design a control

system to prevent flight departure at high angles of attack in a maneuver.
Numerical formulations to solve these problems are described in the following.

Design to Satisfy Mying Qualities Specifications

The general system of equations can be written as

m(_ - vr + wq) = mg x + FA + FT
x x

(la)

_ = + FA + FTm(_ + ur wp) mgy
Y Y

(Ib)

m(w - uq + vp) = mg z + FA + FT
z z

(lc)

Ixx_ - Ixz_ - Ixzpq + (Izz - lyy)rq = LA + LT
(Id)

lyyq + (Ixx - Izz)pr + Ixz(p2 _ r2) = MA + MT
(le)

Izz_ - IxzP + (lyy - Ixx)pq + Ixzqr = NA + NT
(If)

$ = p + q sin# tan0 + r cos# tan0

= q COS# - r sin#

= (q sin# + r cos_)sec8

a = tan-l(w/u)

(lg)

(lh)

(Ii)

lj)

= sin-l(v/_u 2 + v 2 + w 2) (ik)
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where (u, v, w) are the three linear velocity components of the aircraft; (p,

q, r) are the angular velocity components; and (_, e, _) are the Euler angles

in bank, pitch, and yaw, respectively. The subscripts (x, y, z) appearing on

the right-hand side of Eqs. (la) - (Ic) denote components in the corresponding

coordinate directions; and (A, T) denote aerodynamic and thrust components,

respectively, g is the gravitational acceleration, and F's are the external

forces, while (L, M, N) are the moments about the (x-, y-, z-) axes. In

addition, m is the mass and Ixx , Ixz, etc., are the moments of inertia. The

aerodynamic forces and moments (FA, LA, MA, NA) , including the control effects,

are represented in dimensionless coefficients in a tabulated form as functions

of motion variables in this study. The motion variables are (u, v, w, p, q,
r).

This system of equations is numerically integrated from an initial state

(usually a trimmed level flight condition) after disturbances (such as

impulsive control-surface deflections) are imposed to generate time-history
data of motion variables.

For demonstrative purposes, it is assumed that dampers to provide flight

characteristics satisfying flying-quallties specifications are to be deter-

mined. This problem has been solved in the past by conventional methods, such

as the root-locus method, by using linearized equations of motion. It is con-

sidered here mainly to show the generality of the present method even without

linearizing the equations of motion. In the present method, the necessary

design information includes damping ratios, natural frequencies, and time con-

stants of the vehicle motions. These characteristics are identified from

calculated tlme-history results of motion variables after multiple-axls distur-

bances are imposed. The numerical method used for parameter identification is

the method of differential corrections described in the following.

A general discretized system output in the time domain is assumed to be of
the form:

n -_i_nltk m -ojt k

f(t k) = I e (Aicos_it k + Bisin_it k) + I C.e + Dtk + E
i=l J=l j

(2)

where tk - At(k - I), k = I, 2, ..., K, _i = _ni _I - _[ is the damped frequency

of the ith mode. The objective is to use Eq. (2) to fit the dynamic response

data [Qk = X(tk)] through the method of least squares to determine the damping

ratios (_i) natural frequencies (_ni) and time constants (I/oj), i = I, ..., n;

j = I, ..., m. These parameters appear nonlinearly in Eq. (2). Other un-

knowns, Ai, Bi, Cj, D, and E, are linear parameters in Eq. (2). Because of

nonlinearity, finding a solution of the resulting nonlinear algebraic equations

from the least-square formulation is difficult. The best approach, as it has

been determined in the present investigation, is the method of differential

corrections. In other words, the unknown parameters are expressed as
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_i = _i k + A_i

= _ + A_o , etc., i = I, ..., n, J = I, ..., m
ni n ini k

where _ik , _nik, ... are the initial approximations of the ith or jth un-

knowns. Using Taylor series expansions, it is obtained that
n

= _---_f+ A_ _f + _A i 8f 8f
Qk + ek fo(tk) + i=17(A_i 5_ik ni 5--_'-- 5Ai_ + ABi _-_ik )

ni k

m

+ Y (AC _f _f ) _f 5f

j:1 j +Aoj +AD +AE +
3k Jk

(3)

where Ek is the residual. The least-square method is then applied to Eq. (3)

in such a way that

K
2

G = E ek = minimum
k=l

The differential corrections (A_i , etc.) which minimize the G-function are

determined by setting the first derivatives, DG/O(A_i) , etc, to zero. Once

the differential corrections are determined, they are added to the initial

estimates of the unknowns and the process is repeated to determine a new set of

differential corrections until G is a minimum or until there is no significant

change in the unknowns. Typically, convergence is assumed if G ( 10 -7 .

After the necessary design information is obtained from the analysis part

of the algorithm, the optimizer is called to perform the design process.

The damper design problem here may be formulated as follows: find the

pitch rate feedback gain Kq, the roll rate feedback gain Kp, the yaw rate feed-

back gain Kr, the lateral acceleration feedback gain Kay , and the aileron-to-

rudder interconnect gain KARl, such that the following objective function is

minimized:

OBJ --
-BI

e + El x {_sp I - _spl, +

-B2

E + E2 x l_pl - _pl

-B3 -B4
+ +

e + E3 x I_DI -_D I e + E4 × l_nD 1 -_nD I

-B5 -B6
+ (4)

g + E5 x [Trl - Trl + _ + E6 x ;Tsl - Ts.I
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where _sPl ' _PI' _DI' _nDI' Trl' and Tsl are specified values to satisfy MIL-

F-8785B. _sp' _p' _D' enD, Tt, and Ts are values obtained in the analysis

part. In Eq. (4), Bi and El are some weighting factors, e in the denominator

of the objective function is a small number used to prevent the objective func-

tion from being infinite and is set to 10-14 in the present algorithm. The

optimization problem is subject to constraints on magnitudes of damping ratios,

frequencies, time constants, overshoot, etc. In the optimization process, the

design variables are varied systematically by the optimizer to obtain numeri-

cally the gradients of the objective function and constraints. These gradients

are then used through the methods of conjugate gradients and feasible direc-

tions to determine the appropriate design variables to minimize the objective

function. The process continues until the objective function does not change

and the constraints are all satisfied.

,Design to Prevent Flight Departure

Again, Eqs. (i) are numerically integrated. During time integration, a

certain maneuver flight is imposed to induce departure of the airplane. One

example of the maneuver flight is to pull up the airplane (i.e., to increase

the angle of attack) and then induce a high roll rate afterwards. The present

algorithm is constructed on the assumption that a departure condition is

identifiable from the magnitude of the state vector, or motion variables.

Since the latter are directly obtained from time integration of Eqs. (I), no

further data manipulation is needed to calculate the necessary design infor-

mation.

The design objective is achieved by first assuming a control system struc-

ture. Then the design problem may be formulated for the demonstration cases to

be presented as follows.

Determine the aileron-rudder interconnect gain (KARl), the side acceler-

ation feedback gain (Kay) , and the yaw damper gain (Kr) , etc., to

minimize the following objective function:

C3 C4 C5 C6

0BJ = -Clpma x - C2atrlm - [_max[ + _ [+max[ + c l_max[ + e [rmax[ + c

C 7 C 8

lel + c letrlm[ ÷ ¢
(5)

subject to various constraints depending on applications. Note that Eq. (5)

indicates that p (the roll rate) is to be maximized and =max in the transient

motion, #max (yaw angle), _max (sideslip) and rma x (yaw rate) are to be mini-

mized, atrim is calculated as the average angle of attack over the whole time

period and may be used to define the limiting angle of attack to be discussed

later for the F-16. Specific applications are discussed in the next section.
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Two fighter configurations will be used to demonstrate the algorithm, one

being an F-5A and the other an F-16. A pitch damper design for the F-5A will

be considered first. Control to prevent flight departure will be discussed

next. For illustrative purposes, all system gains in the following consider-

ation are assumed constant.

A Pitch Damper Desl_n for an F-SA

The algorithm has been tested and found to work well at different flight

conditions to design dampers under multiple input conditions. At low angles of

attack, calculated results are found to be consistent with existing systems.

To demonstrate this computational tool, consider designing a pitch damper at a

Math number of 0.3 and at an altitude of I0,000 ft. The corresponding _trim is

determined to be 11.7 deg. Assume that a damping ratio of 0.65 (_sPl) is re-

quired in the longitudinal dynamic response of the short-period mode. The

optimization problem may then be formulated as follows:

Determine the pitch damper galn constant (Kq) to

minimize the difference in the actual (_sp) and desired (_sp I) damping

ratios; and

subject to the constraints that

0 < _sp < I

0 < _ < I0 tad/set.
n
sp

Limitations on the control system are that

the pitch rate feedback be limited to 4 deg/sec,

the elevator deflection limits are +5.5 deg to -17 deg., and

the elevator actuator rate limits are -26 to +26 deg/sec.

Fig. i shows that the pitch damper gain constant to satisfy this design problem

is 4.36. The existing system with Kq = 0.2 is not adequate to provide a

damping ratio of 0.65. Note that during the design process, motions along all

axes have been imposed to provide any possible effect of inertial coupling.

Control System to Prevent Yaw Divergence of an F-SA

The second example is to design a control system to prevent yaw divergence

of an F-5A during roll maneuver at high angles of attack. The aircraft is

placed in a departure condition by a maximum constant elevator deflection to

increase the angle of attack, followed by a constant roll control deflection of

2 deg. The optimal control problem is formulated as follows.

Determine the alleron-rudder interconnect gain (KARl) , the side acceler-

ation feedback gain (Kay) , and the yaw damper gain (Kr) , to

maximize the roll rate, and

minimize the sideslip angle (_), the yaw rate (r), and the change in

heading angle (#).
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In other words, in Eq. (5) the terms associated with atrlm and lamaxl are not

used. Some results for the time variation of motion variables are shown in

Fig. 2. It is seen that the present method is effective in satisfying the

design objective by reducing both the change in yaw and bank angles.

Control System to Prevent Pitch Departure of an F-16

The aerodynamic data are obtained from ref. 9. Since the F-16 is unstable

in pitch, design of a pitch control system is of major concern. The system

includes an angle-of-attack and normal-acceleratlon feedback control. The

airplane is first pulled up by applying the full stabilator deflection command

(-25°). The objective is to minimize Eq. (5) with

C 1 = 0.01, C2 ffi0.03, C3 = I, C4 = 12, C5 = 0.01

C6 = 0.008, C7 = i, C8 = 1

These weighting factors are chosen so that various terms in Eq. (5) have the

same order of magnitude. The design variables are the various gain con-

stants. Note that the a-feedback system is defined such that

6 due to a-feedback = K a - K (6)
e _ c

Two flight conditions are examined, one without imposing a roll maneuver

after pull-up and the other with a roll maneuver. Results for the first case

are presented in Fig. 3. It is seen that if there is no angle-of-attack

limiting system (K ffi0, Kc = 0 ), the airplane will trim at an angle of attack

equal to about 66 deg, which is the deep-stall condition. On the other hand,

the limiting system would limit the trim angle of attack to about 25 deg.

For the second case, a roll control of -I0 deg is applied between t = 22

and 34 sec. Note that roll should induce pltch-up due to inertial coupling.

The results shown in Fig. 4 indicate that no departure has occurred and _trim

is determined to be 24.7 deg. By changing the initial time at which the roll

control is applied, atrlm can still be determined to be about 25 deg. There-

fore, it may be concluded that maximizing _trlm is to define approximately the

limiting angle of attack.

CONCLUSIONS

Application of numerical optimization techniques to control system design

was demonstrated for F-5A and F-16 configurations at high angles of attack.

The methodology accounted for nonlinearities in aerodynamics and dynamics.

Specific examples were presented to design control systems to satisfy flying

qualities requirements and to prevent flight departure. The results indicated

that the present method was effective in satisfying design objectives.
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An Inverse Kinematics Algorithm For A Highly Redundant

Variable-Geometry-Truss Manipulator

Frank Naccarato

Peter Hughes

University of Toronto Institute for Aerospace Studies

4925 Dufferin St., Downview, Ontario, Canada M3H 5T6

Abstract

A new class of robotic arm consists of a periodic sequence of truss substructures, each

of which has several variable-length members. Such variable-geometry-truss manipu-

lators (VGTMs) are inherently highly redundant and promise a significant increase in

dexterity over conventional anthropomorphic manipulators. This dexterity may be ex-

ploited for both obstacle avoidance and controlled deployment in complex workspaces.

The inverse kinematics problem for such unorthodox manipulators, however, becomes

complex because of the large number of degrees of freedom, and conventional solu-

tions to the inverse kinematics problem become inefficient because of the high degree

of redundancy. This paper presents a solution to this problem based on a spline_like

reference curve for the manipulator's shape. Such an approach has a number of advan-

tages: (a) direct, intuitive manipulation of shape; (b) reduced calculation time; and

(c) direct control over the effective degree of redundancy of the manipulator. Further-

more, although the algorithm has been developed primarily for variable-geometry-truss

manipulators, it is general enough for application to a number of manipulator designs.

1 Introduction

A new class of robotic arm consists of a periodic sequence of truss substructures containing variable-

length members. Variable-geometry-truss manipulators (VGTMs) have emerged from various de-

signs for deployable/controllable trusses for space-based applications [10,12,16]. An example of

a VGTM is illustrated in Figure 1. The manipulator is a statically determinate truss comprised

of linear members hinged together at joints. Some members are actuated and can change their

length; control of these lengths determines the manipulator's shape as well as the position and

orientation of the end effector.

Truss manipulators promise a number of advantages over conventional anthropomorphic

robot arms and space cranes, not the least of which is a significant increase in dexterity. This

increased dexterity, however, has a price: a complex and unorthodox kinematic description. This

paper will outline a kinematic methodology for VGTMs and set up a solution to the general
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Figure 1: Example of a VGTM

inversekinematicsproblem. Furthermore, a new inversekinematicsalgorithm-- based on spline-

likereferenceshape curves-- willbe presentedand compared with the more conventionalsolution.

2 Background to the Inverse Kinematics Problem

The purpose of any robotic arm is to manipulate an end effector along a desired trajectory; this

motion depends on the combined action of the manipulator's actuators. The task of determining

the correct actuator motion for a given end effector trajectory is the inverse kinematics problem.

2.1 Direct Kinematics

The end effector is defined by a set of n_ coordinates, x_(t). This vector may contain up to six

elements: three position and three orientation coordinates. The manipulator's configuration is

defined by the vector q(t) containing nq elements representing the manipulator's internal degrees

of freedom. In general, we may state the direct kinematics relationship in the form

x_ = f(q) (1)

ne <_ nq (2)

The inequality represents the possibility of redundancy.

2.2 Differential Kinematics

In general, the direct kinematics relationship (1) cannot be inverted directly to give the inverse

kinematics solution. Instead, we resort to differential kinematics [1,15], whereby we arrive at a
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Figure 2: Geometric Representation of a VGTM

rate-linear system by expanding the time derivative of xe(t):

xe(t) = J(q)cl(t)

Of

J _ OqT

The Jacobian matriz J has dimensions n_ x nq.

(3)

(4)

2.3 Inverse Kinematics Solution with Redundancy

For a redundant manipulator, the Jacobian is not square and a solution to (3) is not straightfor-

ward. A common formulation of a solution takes the form [6,7]

_I = J+_:e + (I --J+J)cl, (5)

JJ+ = 1 (6)

The Moore-Penrose pseudoinverse [13], J+, represents a leaat-squares solution to (3); alternative

solutions have used weighted pseudoinverses [5]. The vector db is an arbitrary configuration velocity

that may be used to minimize a cost function, avoid obstacles or fulfil some other objective [3,8,11].

The operator (1 - J+J) projects this velocity onto the null space of J so that the desired motion

of the end effector is not affected.

3 Kinematic Description of VGTMs

Generalized techniques exist to develop kinematic descriptions for conventional anthropomorphic

manipulators [2]. These techniques, however, are not well suited to truss manipulators. In this

section, a general kinematic methodology for VGTMs will be developed.
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3.1 VGTM Geometry

Figure 2 shows a geometric representation of a truss manipulator. The linear members of the truss

(actuated and nonactuated) are represented by straight lines having lengths lk. Embedded in the

joint mechanisms are the member endpoints, represented by the position vectors rik. Associated

with each joint -- or truss node -- is a node coordinate vector, Pi; each node vector represents a

fixed point within the joint mechanism that defines the joint's position in space. Since the truss

structures are assumed to be statically determinate, we may calculate the orientation of each joint

given the set of node vectors [Pl, P2,'", PN], where N is the number of joints in the truss.

3.2 Configuration Variables

For conventional robotic arms, the configuration variables are identical to the actuator variables,

i.e., revolute joint angles and prismatic joint lengths. For VGTMs, however, the actuator variables

-- the nonfixed member lengths -- axe unsuitable when writing the direct kinematics; an inter-

mediate set of variables must be used. The most appropriate choice for configuration variables

are the node coordinate vectors Pi, (i = 1,2,..., N). These variables have the following properties

that make them suitable:

°

.

Relationships may be found between the node vectors and useful external parameters. For

instance, we may be interested in the position and orientation of a particular triangular face

of the truss (where an instrument platform may be attached); these coordinates may be

found if the node vectors describing the vertices of the triangle are known.

Since the truss is statically determinate, we may calculate the endpoint vectors rik given

p_, (i = 1,2,.--,N); once the endpoints are known, we may determine the length of each

actuator. Hence, the actuator coordinates for the truss may be arrived at through this set

of configuration variables.

3.3 Kinematic Relationships

There are three kinematic relationships by which we may determine the node coordinate vectors:

Explicit External Constraints. This kinematic relationship involves node vectors that are

known, explicit functions of time; these functions are defined independently of the truss configu-

ration and hence are 'external.' If there are Nc such constrained nodes, we may group them into

the vector Pc such that

po = col[p,(t)] (7)

i = 1,2,...,Nc (s)

Typically, these form the base nodes of a VGTM. For completeness, we also group the uncon-

strained node vectors into p:

p = col[p_] (9)

i = Nc+l, Nc+2,...,N (10)
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Implicit External Constraints.

nodes to a set of external coordinates -- such as the end effector coordinates xe

form

f (p, pc) = x0(t)

where f (p, Pc) is a set of functions in the node coordinate vectors.

This type of constraint describes the relationship of truss
-- and takes the

(11)

Internal Constraints. The n_ nonactuated members of a truss manipulator serve as hard con-

straints to the motion of the nodes. These internal constraints take the implicit form

(rik - rjk)T(rik - rjk) = (12)

rik = rik(p, pc) (13)

k = 1,2,...,n/ (14)

i,j = 1,2,...,N (15)

The length of fixed member k is expressed in terms of its endpoint vectors, rik. If the truss nodes

are perfect pin joints, the endpoint vectors become identical to the node vectors.

3.4 Inverse Kinematics

A unique solution for p may be impossible to determine because of redundancy. To resolve this

redundancy, we first find rate-linear expressions based on the constraint equations. From the

implicit external constraints (11), we form

Z_(p, pc)_ + Jc(P, Pc)Pc = x_ (16)

where

Of (17)
Ju - Op T

of (18)
Jr -

From the internalconstraintswe get a setofnt equations,(k = 1,2,...,n;), that take the form

(rik- rjk) T [(Jik,. -- Jjk,u)P "{-(Jik,c -- Jjk,c)#c] -- 0 (19)

0rik (20)
Jik,u = 0--_

Orik (21)
Jik,c - 0p_

(N.B. If the nodes are ideal pin joints, the nonzero portions of these Jacobians reduce to identity

matrices, and we are left with a much simpler set of expressions [18]). We may group these nt

equations into a system:

J,(P,Pc)P = xg(P,Pc) (22)
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Figure3: VGTMs Approach Continuum

where

xa(p, Pc) = col[-(rik - rjk)T(Jik,c -- J/k,c)Pc]k (23)

Sg(P, Pc) ---- col[(rik -- rjk)T(Jik,u -- Jjk,u)]k (24)

Combining (16) and (22), and defining

we arrive at the following system:

x-
j = [Ju]jg (26)

s(p, po)h =

The inverse kinematic solution of (27) takes the conventional form

,b = J+5_ + (1 - J+J),b,

(27)

(28)

4 Inverse Kinematics Using Reference Shape Curves

In the previous section, a solution to the inverse kinematics problem for VGTMs was found using

the conventional methods outlined in §2. An alternative solution will now be presented, and a

comparison will be made to the previous solution to illustrate some advantages associated with

the new technique.
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4.1 Basic Concept

A distinctive feature of the VGTM design is its ability to assume curvilinear shapes [9]. Further-

more, as illustrated in figure 3, the shape of a truss manipulator may be made to conform exactly

to an arbitrary space curve in the limit as the number of bays gets large. It is this serpentine

property of VGTMs that has inspired an inverse kinematics technique based on the modelling of

the manipulator's shape using reference shape curves.

The proposed solution algorithm is as follows:

1. When solving the inverse kinematics problem, repla,_e the manipulator by a continuous space
curve that satisfies the same external constraints.

2. Force the manipulator to track this new desired shape.

The reference shape curve may be thought of as the next dimensional extension of the end

effector coordinates, xe: while the latter is defined at a point, the reference curve is a continuous

coordinate distribution over a line. The second-order case will be a reference shape surface that

may be used to model plate-like variable geometry trusses.

The primary reasons for pursuing such a technique are

° A simplified, analytic expression for the manipulator's shape will help in modelling interac-

tions with the robot's environment (e.g., collision detection, obstacle avoidance, controlled

deployment).

2. Less complex kinematic relations, resulting from the simplified shape model, will improve

the computational efficiency of the inverse kinematics solution.
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Figure 5: Coordinate Distribution Associated with Space Curve

4.2 Type of Curve

A certain class of space curve, found in computer graphics applications [17], has a number of

properties that are desirable for this application. These spline-like curves -- parameterized by s

(0 < 8 < 1) -- have the form

N

= (29)
i----0

N

1 = _wi(s) (30)
i=0

(31)

Because the weightingExample of such curves are Bezier curves, B-splines and Beta-splines.

functions wi(s) are a partition of unity, a point on the curve r is a weighted average of the

control vertices Pi. Joining the control verticies sequentially forms an open control polygon that

approximates the actual shape of the curve; doseness of fit between the control polygon and the

curve depends on the form of the weighting functions. Figure 4 illustrates this relationship for a

Bezier curve.

4.3 Coordinate Distribution

Associated with the curve is a distribution of position and orientation coordinates, x(s, p):

x(s, p) = O(s, p)

p = CO1 [pi]

(32)

(33)
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Figure6: Partitioning of VGTM

Figure5 showsthat x(s, p) describes a frame of reference :_'(s, t) that has two properties:

1. Its origin intersects the curve at r(s,p).

2. One of its axes is tangent to the curve at the origin.

Since the tangent is a function of p, two of the three attitude coordinates axe explicit functions

of the control vertices. The third attitude coordinate --- representing a torsion about the tangent

-- may be specified independently of the control vertices, and hence depends on the parameter s

alone.

4.4 Kinematics of a Curve

The relationship between the control verticies and the overall curve shape allows direct, intuitive

manipulation of the curve. Hence, the control vertices p will be defined as the configuraton
variables for the curve. The direct kinematics relation follows from the fact that the coordinate

distribution, x, is an extension of the original end effector coordinates, i.e.,

x,(t) = x(1,t)

The rate-lineax kinematic expression for any point on tile curve is

(34)

where Js --

J, (s,p)l_ = _(s,t)

the curve Jacobian- is defined as

J_(s, p) = op"

Opt"

(35)

(36)
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Figure 7: Tracking the Curve

To impose the implicit external constraint expressed in (34), we set

J, (1,p) p =

Following (5), the solution for the curve kinematics becomes

1_ = J+xe -I- (1 - J+J.)l _. (38)

As was the case for the general manipulator in §2 and for a VGTM in §3, the vector 1_, may be

formulated to achieve a variety of objectives including obstacle avoidance.

4.5 Tracking the Reference Curve

The second step in the algorithm is to force the manipulator to track the reference curve. To

do this, the manipulator is partitioned into smaller VGTMs (see figure 6); each segment may be

described kinematically in the same manner as the whole VGTM. The implicit external constraints

x_(t) corresponding to each segment axe then read off the reference curve at discrete points --

[80, sl,..., sN] -- called curve nodes, i.e.

x_(t) = x(si, p) (39)

The VGTM segments may be solved in one of two ways:

1. Recursively, whereby the implicit constraints for the kth bay axe given by x(sk,p), and the

explicit constraints axe provided by the (k - 1)st bay, or,

2. In parallel, whereby each bay is solve independantly using only the implicit information

provided by the curve.

Figure 7 shows a manipulator segment tracking a curve that is executing a maneuver.
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4.6 Example Maneuver

Figure 8 shows sample frames from a 50-step maneuver involving a five-bay VGTM. The arm is

directed to avoid two cube-shaped obstacles. The inverse kinematics has been solved using the

reference curve technique; clearly, the technique works adequately in that the desired end effector

trajectory is tracked, and a safe clearance is maintained between the robot arm and the obstacles.

4.7 Advantages to the Reference Curve Technique

Some of the advantages of the reference curve technique are summarized below:

Improved Computational Efficiency To evaluate any improvement in computation time,

a test trajectory was designed and both techniques -- conventional and reference shape curve

(recursive) -- were used to solve the inverse kinematics for VGTMs of different lengths. The

maneuver was partitioned into 50 time-steps, and the runs were carried out on an APOLLO TM

DN 4000 workstation. Figure 9 shows a comparison of the run-times for both methods; clearly,

there is a marked improvement in computational efficiency when using the reference shape curve

technique. This improvement may be attributed to the recursive nature of the tracking problem,

as discussed in §4.5.

Parallel Structure of Problem As stated earlier, the tracking problem may be solved in

parallel as well. This natural parallel structure makes the reference curve technique conducive to

a multiprocessing environment [14]; in such an architecture, dedicated processors may be used to

solve the inverse kinematics of the VGTM segments concurrently, thereby providing a quantum

improvement in efficiency.
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Analytical Description of Manipulator Shape An analytical expression for the manipu-

lator's shape is helpful when describing robot/environment interactions. An important part of

many obstacle avoidance routines involves finding the closest point to the obstacle on the manip-

ulator [4,5,11]. Using the shape curve equation and quickly-converging iterative solvers, we may

readily solve for these critical points. An analytical description may also be incorporated into a

mathematical model of the manipulator's workspace to predict collisions.

Variable Degree of Redundancy Since the global inverse kinematics problem has been shifted

from the manipulator to the reference curve, we may specify the degree of redundancy a priori

by choosing the number of control vertices used to describe the space curve. For instance, if it

is known that the VGTM is to operate in a very simple, obstacle-free workspace, then only a

minimum number of degrees of freedom -- enough to satisfy the external constraints -- need be

included; conversely, a complex workspace will demand the use of more control vertices. There is

a limit, of course: it will be impossible for the manipulator to track a shape curve that has more

degrees of freedom than itself. Yet, this fiexiblity in choosing the degree of redundancy may be

used to reduce computational overhead.

4.8 Generality

While developed for application to truss manipulators, the reference curve method is general

enough to find use as a redundancy resolution technique with more conventional robotic arms.

The first step in the algorithm remains the same since the kinematics of the reference curve is

independant of the manipulator. The second step -- the tracking problem -- may be applied to

any robotic arm that can be easily segmented into smaller manipulators.
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5 Conclusions

A generalized kinematic description has been presented for variable-geometry-truss manipulators.

From this description, a solution to the inverse kinematics problem was found by conventional

means. An alternative technique -- based on reference shape curves -- was developed and applied

to VGTMs in the hopes of improving the efficiency of the straightforward approach, as well to

inject some geometric insight in the description of the manipulator's shape. The new technique

succeeded in solving the inverse kinematics problem with a significantly decreased computation

time. Further advantages were noted:

• Technique is attractive to obstacle avoidance and collision detection applications;

• Problem structure is applicable to parallel processing;

* Variable degree of redundancy

* Generality

The preliminary success of this new method is encouraging for the development of real-time-control

robotic facilities based on truss manipulators.
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ABSTRACT

The prescribed tasks in high speed robotic systems are severely
deteriorated because of their manipulator dynamic deflections. On the
other hand conventional dynamic modeling techniques fail to revea!
appopriate control forces in flexible systems. In this paper the
conventional dynamic equations of motion for systems subject to
kinematical constraints are modified by a new concept of control force
representation. The directions of the control forces are selected such
that they correspond to the joint degrees of freedom. Then the joint
control forces and torques that yield unperturbed prescribed motions are
solved simultaneously with the system motion. A flexible manipulator is
presented to illustrate the methods proposed.

1. INTRODUCTION

The operation of high speed robots is severely limited by their

manipulator dynamic deflection. The vibrations deteriorate the accuracies

of the prescribed tasks assigned to certain points and significantly

reduce the robot arm production rate. Hence determination of the

appropriate control forces and torques at tile joints that yield stable

prescribed motions is an important control problem.
In this paper geometrical constraints represent geometrical

restrictions such as closed loops and physical guides. On the other hand

kinematical constraints represent prescribed desired paths or prescribed

motions of certain points or bodies. Such prescribed motions are to be

realized by control forces applied by the actuators in the system which

are usually placed at the joints.
In the conventional approach, constraints in the system are modeled

by constraint reaction forces whose directions are perpendicular to the

constraint surfaces. (See Yoo and Haug [I], Shabana [2], Kamman and Huston

[3], Hemami and Weimer [4], Nikravesh [5].) Using conventional methods,

when the prescribed motions are treated as constraint equations and

embedded into the 9overnin9 equations of motion, the corresponding

generalized constraint reaction forces can be determined. However these

forces cannot be utilized as physically possible control forces due to the
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presence of components that correspond to the elastic coordinates. For

this reason previous solution procedures involved feedback and adaptive
control algorithms which in turn increase the complexity of the problem

considerably.
In this paper the kinematical constraints are modeled by genera]

direction control forces. The modified equations of motion for flexible

multibody and robotic systems subject to geometrical and kinematical cons-

traints are developed. The directions of the control forces are selected

such that they correspond to the joint degrees of freedom. By this way

joint control forces and torques that achieve the unperturbed prescribed

motions are solved simultaneously with the corresponding system motion.

The modeling of flexible multibody systems in 3oint space based on finite

element method and component mode synthesis, as developed in references

Ider [6], Ider and Amirouche [7] is also outlined. In the equations of
motion all nonlinear interactions between the rigid body and elastic

coordinates are automatically incorporated.
This paper is divided into seven sections. The first section provided

an introduction. In the second section kinematics and constraint equations

in flexible multibody systems are outlined. The conventional equations of

motion for constrained systems are presented in the third section. In

section four the problems with the conventional approach are discussed. In

the fifth section the modified equations of motion with general direction

control forces are developed. Sixth section presents the simulations of a

flexible manipulator by the proposed method. Conclusions form the last
section.

2. FLEXIBLE NULTIBODY KINENATICS AND CONSTRAINT EQUATIONS

In a multibody system each joint connection can be described by a total of

six degrees of freedom. The constrained joint coordinates are eliminated

in the analysis, hence all possible joint types are allowed. The system

may contain closed loops and any selected points may have prescribed

motions. First the recursive dynamical equations are developed for a tree

configuration which is obtained by cutting the closed loops open (using

any arbitrary joint in the loop). Closed loops and prescribed motions are

then imposed as a set of constraint equations.

In Figure I, a typical deformable body Bk and its lower connecting

body Bj are shown. The joint between Bk and Bj is the lower joint of Bk

and is defined by points Qk and Q_ and axis frames nk and nk* fixed at

these points. The elastic deformations are modeled by finite e]ement

method with respect to a body reference axis frame denoted by Nk. Nk, in

general, is not fixed to a point on the body. It follows the rigid body

motion of Bk in a manner consistent with the specified boundary

conditions [6,7].

The position of the system can be described by the relative joint

coordinates of each body and the modal coordinates of the flexible bodies.

Translation of nk with respect to nk_ is denoted by vector zk. For the

relative rigid body rotation degrees of freedom, successive Euler angles

in transforming nk to nk* can be used. The modal coordinates q_, j=1,..,m k
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Figure I. A multibody system

of each body Bk represent the normal modes of deformation obtained by

component mode synthesis and mk is the number of the modes considered•
Let vector _k represent the angular velocity of n k with respect to

n k* Then the generalized speeds of the system can be conveniently

selected as the relative angular velocity components, the relative
trunslational velocity components and the modal coordinate derivatives.

The vector of the system generalized speeds y can be defined as

y : [@T, p,nT]+ (i)

where

= [G_, GI, G_,..., wl, , (2)

(3)

and

(4)

For the dynamical equations we need the velocity, in fixed frame R,

of an arbitrary point P in finite element i of body Bk. TO this end, the

angular velocity of Nk in R, wk, is obtained by summin9 successive

relative angular velocites and can be compactly expressed as
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wk : vk _, + i,k_ (5)

where v k and M k are the partial angular velocity matrices composed of the

coeffficients of the generalized speeds _ and _, respectively.

It can be shown [6,7] that the velocity of point P in R could be

written as

v ki= aki _ + bv _ + c ki (6)

where a kl , bk and ck_ are the partial velocity arrays associated with _,

and h, and are functions of displacements only.
Depending on each joint type, the constrained joint coordinates are

then eliminated in the generalized speed vectors _ and _ (equations (2),

(3)). When the corresponding columns of the partial velocity matrices are

eliminated, v k and ak_ are 3xnl matrices, and bk is a 3xn2 matrix, where

nl is the total number of the free joint rotation degrees of freedom and

nz is the total number of the free joint translation degrees of freedom.

The remaining arrays M k and cki are 3xm (m=m1+...+mN).

Let the tree structure have n degrees of freedom (n=nl + nz + m), and
let the total number of closed loop and prescribed motion type of

constraints be c. Then the system's degrees of freedom reduce to n-c.
The constraint equations can be generated using the partial velocity

matrices. For example, if a point say A in Br has a prescribed motion, and

the prescribed velocity vector of that point is given by g(t) with respect

to R, then denoting the local undeformed vector from Or to A by sr,the

resulting three constraint equations are

a rt _ + br _ + c r4h = g (7)

where a rt and cri correspond to st.
Similarly if the refence axis frame of Br has a prescribed

velocity h(t), we have
angular

vr @ +Iwr_ = h (8)

For a closed loop type of constraint, let Br and B= connect with each

other to form a closed loop in 3-D. Differentiation of the position vector

equation expressing loop closure leads to the three velocity level

constraint equations,

(ar_-a "i) _ + (br-b s) _ + (cr_-c "i)q = 0 (9)

The holonomic and nonholonomic constraint equations can be compactly
written as
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B y = g (10)

where B is a cxn constraint matrix and g contains prescribed velocities.

3. COI_ST_IK[ REACTION FORCES AND EQUATIONS OF #lOTION

Kane's equations for the constrained system can be written as

F + F* + S + Fc = 0

where F, F*, S and Fc are respectively the vectors of

external, inertia, stiffness and constraint forces.

The generalized inertia forces F* can be written in the

form,

F* =M_+Q

where individual submatrices of M and Q can be expressed in terms of

partial velocity matrices [7] as,

(11)

generalized

following

(12)

the

akiTaki

aki T bk bkTb k

aki T cki bkTcki

sym.

ckiTcki

p dV (13)

and

Q =E Z) r
k | Vkl

akiT(aki _ + bk _ + cki _ )

aki T (aki & + bk _ + cki4 )

akIT(akl _ + bk _ + cklq )

pdV (14)

The stiffness vector S is obtained from the structural

geometrical stiffness matrices of each body expressed in
coordinates.

The generalized constraint forces Fc can be expressed as

and

modal

Fc = B T X (15)

where X is the vector of undetermined multipliers. Since the rows of B are

the partial velocity vectors, Xi, i=1,...,c represent the constraint
reaction forces generated at the application of the constraints. A row of
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B can also be viewed as the direction of that constraint in
generalized space.

Substitution of equations (12) and (15) into eq. (11) leads to

the

M y + S + Q + BT _k = F (16)

Our purpose is to find the accelerations for numerical integration.

To this end the constraint equations in the acceleration level are

B y = g - B y (17)

Equations (16) and (17) constitute n+c equations from which the
accelerations and the undetermined mu]tipliers can be obtained.

The multipliers could be eliminated for computational efficiency. To

this end, let C denote a nx(n-c) matrix which is orthogonal complement to
B [8]. Premultiplying eq. (16) by CT, and combining the resulting equation

with eq. (17), we obtain the augmented equations for the constrained

system as below.

[ cTM]B Y = [ cT(F-s-Q)]g-By
(18)

4. PROBLEMS WITH THE CONVENTIONAL APPROACH

In the conventional approach the constraints in the system are modeled by

constraint reaction forces which are perpendicular to constraint surfaces.

They represent the reactions of the environment. However kinematical cons-

traints represent desired motions and are meant to be realized by internal
control forces. Kinematical constraints are particularly important in

robotic systems where certain points are assigned specific tasks that

should be realized by joint actuators.
Let ci of the constraints in the system be geometric and the

remaining cz (cz=c-cl) be kinematical. The matrix of the constraint force

directions B and the vector of constraint force magnitudes X can be

partitioned such that

B = [B GT BKT] T (19)

and

X = [X GT k Kr] (20)

where the dimensions of BG, BK, XG and XK are clxn, c2xn, cl and c2
respective]y.

Then eq. (16) can be written in the following form
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H y + Q + S + F6 + Fx - F (21)

where the generalized constraint forces F6 and FK

respectively to geometrical and kinematical constraints are

corresponding

FG = BeT XG (22)

and

FK : BKT X K (23)

The constrained system as given by eq. (18) could be simulated to

determine the generalized constraint forces. In view of eq. (21), then

control forces numerically equal to FK would yield the same motion of the

system ensuring the realization of the desired motions.

However, in Flexible systems FK contains components that correspond

to the elastic coordinates in addition to the components that correspond
to the joint coordinates. While the latter can be applied by the joint

actuators as control forces, the former cannot be produced by a physical

means as control forces. That FK has components in the direction of the

elastic coordinates is apparent from eqs. (7) and (8) where the

coefficients of the generalized speeds form the vectors of BK in eq. (23).

Hence, with the conventional approach it is not possible to design a set

of control forces that can achieve unperturbed prescribed motions in

flexible robotic and multibody systems.

5. CONTROL FORCES FOR KINB_TICAL CONSTRAINIS AND NODIFIED [-_TIOll OF
NOTION

Since kinematical constraints are to be realized by control forces in the

system, general direction control forces are introduced to the equations

of motion, so that

M _ + Q + S + BG _GT+ B KT _K + A T _ = F (24)

where A is a c2xn matrix of control force directions and _ is a c2
dimensional vector of control force magnitudes. Let the control force
directions are selected such that the constraint reaction forces

corresponding to the kinematical constraints become zero. Then eq. (24)

can be written as follows, as shown in accompanying paper (Ider [9]).

M _ + Q + S + ZTv = F (25)

where

ZT = [BGT AT] (26)
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and

v T = [_kGT M T] (127)

The directions A need to be selected from physical considerations and then
equations (25) and (17) can be solved together to compute the control
force magnitudes and the corresponding generalized accelerations. A should
be chosen such that rank of Z is c, so that c2 kinematical conditions
could be controlled.

Let _ be a cx(n-c) matrix orthogonal complement to Z. Premultiplyin9
eq. (25) by CT and augmenting with eq. (17), we obtain reduced equations

= {  T -By 1
(28)

The selected control force directions can realize the prescribed
motions if and only if the augmented mass matrix in eq. (28) is non
singular. Hence singularity of the augmented mass matrix represents a
condition to test the solution. In other words, the directions A should be
such that the vector space spanned by the rows of B and the vector space
spanned by the rows of _T are nonintersectin9 [9].

It has been observed that for flexible robotic systems if the control
forces are selected in the directions along the corresponding joint
degrees of freedom the augmented mass matrix becomes full rank and hence
it is possible to realize the kinematical constraints by actuators at the
joints. This will be illustrated by the simulations of a flexible
manipulator in the next section.

6. SINULkTIONS OF k FLEXIBLE #4L4JqIPUI_ATOR

In the planar manipulator shown in Figure 2, link 2 is a flexible link,

while link I is treated rigid. The data used for link I are L1=Im, m1=3Okg

and Ii=I0 kg.m2. Link 2 is modeled by beam elements with deformation

displacement and rotation nodal coordinates [10], and L2=2.7m, a=1.8m,

mz=15kg, E=68.95x10 g N/m 2 and area A:0.O005 m2. The longitudinal
deformation is neglected due to the axial stiffness and the transverse

deflection is described by the first two modes since higher modes were
observed to be negligible. Therefore the generalized coordinates of the

system are el, e2, and modal coordinates _I and q2. The generalized speed
vector

y = [6,, e2, T.

Initially the system is at rest, and eI=80 o and e2:-160 °. Point A on

link 2 is required to deploy from the given position 1.5m horizontally.

The prescribed motion of point A is given as
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Figure 2. Flexible manipulator

XA = 1.5 (t -_-_sin + 0.4862

yA = -0.7878
(29)

The constraint equations in the system can be expressed as

LlC_ + L2C12 - s12((Plql + $2112) - XA

LlSl + L2s12 + c12((plrll + (_2r12) - yA

(30)

where 0_ and $2 are the values that correspond to the ]ocation of point A
in the first and second eigenvectors respectively, cl=cosel,
c12=cos(e_+e2), s_=sinel and slz=sin(e1+ez).
At the acceleration ]eve] the constraints are given by eq. (17) where B
and g are

B =[ LISI+L2 sl 2+C12 (_)lrl l+Oz q2 )
L1 Cl +L2c12 -St 2 (_1 q 1 +02q 2 )

L2 S12+CI 2 (:_1111+_2r12 ) l)IS12

L2C12-Sl 2 (01q1+_2q2) 01c12 _2S12]
_2C1 2

and

g = [XA , 0] T (31)
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First the system is simulated using the conventional method. Notice
that both constraints in the system are kinematical. Our objective is to

determine joint moments M1 and M2 that would produce unperturbed desired

motion of point A. The generalized constraint forces in eq. (15) are

F_

F_

F_

F_

'X1 {L1 sl +Lzsl 2+cl 2 (_1ql +_)2qz ) ] }+ X2 {L1 cl +L2cl 2-sl z ((_1111+_2rl2 ) }

)k1{L2s12+c12((_1r_1+_)2q2)} + )kz{L2c12-S12((_lq1+(_21]2)}

M¢,slz + X2®,clz

.)kI(_2S12 + >k252C12

(32)

The system is simulated for the deployment motion period T=Isec. The

generalized constraint forces obtained are plotted in Figure 3. Notice
that if one considers F_ and F_ as joint control moments, F_ and F_ will

be left unaccounted. They cannot be converted to any set of physically

applicable control forces or moments, and a simulation only with FI and Fz
as control moments MI and M2 produces perturbations for point A.

20O

F °

ioo

-I00-

Figure 3. Generalized constraint forces using conventional
method: I. F_ , 2. F_ , 3. F_ , F_
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Figure 4. Joint moments for unperturbed motion of A.

Flexible system: I. M1 , 2. M2

Rigid system: 3. MI , 4. M2

The system is then resimulated by the control force approach

presented in this paper. The control force directions are selected such

that they correspond to the joint coordinates el and e2, i.e.

A_[I 0 0 0

l 0 I 0 0
(33)

The control forces ZTv become

ZT]# - Vl

"1

0

+V_
0

.0

] Vl

V2

0
I

OJ 0

(34)

This means that the required joint moments for" unperturbed motion of point
A are M1=vl and M2=v2.
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With the above control force directions, the augmented mass matrix

was observed to be full rank, i.e. singularity (or near singularity) did

not occur, conforming with physical expectations. The joint contro]

moments MI and M2 that produce unperturbed motion of point A are plotted

in Figure 4.
For comparison, the system is resimu]ated with both bodies considered

rigid, and the joint moments corresponding to the rigid system are also

shown in Figure 4. The difference in the control moments for the flexible

system accounts for the effects of the elastic deformations.

7. (X)IICLUSIOItS

This paper presented a general procedure to determine the joint control

forces and torques in flexible robotic systems, that realize prescribed

motions in an unperturbed manner. The method is based on a new approach

for modeling kinematical constraints by general direction control forces.
The control forces have been selected along the directions of the joint

degrees of freedom in the generalized space, and the control force

magnitudes are solved simultaneously with the corresponding system motion.
It has been shown that with the conventional approach of

perpendicular constraint forces a solution to the problem cannot be
obtained.

In the analysis the flexible bodies have been modeled by finite
element method and all interactions between the rigid and elastic motion

have been included. By the procedures presented in this paper the body

flexibilities can be controlled by applying forces and torques at the

joints.
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Abstract
A flexible structure was modelled and actively controlled by using a single space realizable

linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar truss
structure at an "optimal" location and it was considered as both passive and active device. The

placement of the actuator was specified by examining the eigenvalues of the modified model that
included the actuator dynamics, and the frequency response functions of the modified system. The
electronic stiffness of the actuator was specified, such that the proof mass actuator system was
tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The
active control law was limited to velocity feedback by integrating of the signals of two

accelerometers attached to the structure. The two lower modes of the closed-loop structure were

placed further in the LHS of the complex plane. The theoretically predicted passive and active
control law was experimentally verified.

1. Introduction
Large continuous structures, like space structures tend to have tight restrictions on the

actual response of the structure. A passive or active control design is often necessary for the
structure to satisfy the desired response restrictions. The success of the passive and active control

design is based on the accuracy of the model that describes the dynamic characteristics of the
structure. Flexible distributed parameter systems can be successfully modelled by finite element

analysis 1. This category of structures is lightly damped and tends to have most of its mass
concentrated at the joints '_. Their natural frequencies are low and appear in closely spaced groups.
The finite element model of the structure that consists of a mass and a stiffness matrix, can be

reduced by traditional model reduction techniques by eliminating the insignificant displacements at

the nodal points 3. The dissipation energy of the system can be modelled by constructing a system

damping matrix, by assuming a normal mode system 4, and by using the damping ratios obtained

experimentally from modal parameter estimation methods 5, 6, 7. In the case whe re the
discrepancy between the analytical model and the experimentally obtained modal model is

significant, the reduced order analytical damped model can be further modified 8, such that it is in

agreement with the experimental natural frequencies, damping ratios and mode shapes
8,9,10, l 1,12,13. It is important to realize that the design of the "optimal" control is based on the
modified reduced order model, but it is actually applied to the real structure. Therefore, the model

improvement mentioned above, becomes very important and its accuracy is vital in the success of

the design of the control law.
The structure used here, is a planar truss constructed with space realizable links and joints

in the configuration presented in fig. 1. The truss is lightly damped and has the behavior of a large

*Currently with G.E. Corporate Research and Development Center, Advanced Projects

Laboratory, Schenectady, N.Y. 12301.
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spacestructure,with most of its mass concentrated at the joints 2. It possesses low resonant
frequencies that appear in closely spaced groups and has both translational and rotational modes of
vibration.

The structure is passively and actively controlled by a single actuator. The actuator used in
this experiment is the NASA/UVA/UB proof mass actuator system. The actuator dynamics are
taken into consideration and a global model is constructed which includes both the structure and the

actuator dynamics 14,15 The location of the actuator is specified 16,17 by examining the
eigenvalues of the uncontrolled global model and the frequency response functions of the global
system. The actuator is considered as both a passive and an active device with two design
variables, its electronic stiffness and the generated force. The electronic stiffness is specified such
that the actuator proof-mass-electronic-spring system is tuned to one of the structural modes of the

truss by using traditional vibration absorber design 18,19,20. The generated force of the actuator
is specified by using output feedback techniques. Here, the active control law was limited to
velocity feedback by integrating the signals of two accelerometers attached to the structure. The
objective is to move the two lower modes of the closed-loop structure further in the LHS of the

complex plane and at the same time maintain stability of the closed-loop system 21,22. The
theoretically predicted passive and active control law are experimentally implemented and the
results are evaluated.

2. Modeling
2.1 Construction of the Finite Element Model

The finite element model of the structure was constructed by using the commercially
available MSC/PAL package for dynamic modeling. The structure weighed 7.335 Kg and was
constructed with links and joints, mainly made of aluminum alloy. The density of the material was
measured experimentally by using standard techniques. The Young's modulus of aluminum alloy
was used, since the links and joints are mainly constructed with this material. The nodal points of
the finite element model coincide with the location ofthe joints of the structure. Every nodal point
was allowed to have three degrees of freedom, that is translation in the z-axis and rotations about

the x and y-axis resulting in a 48-degree-of-freedom model (see Fig. 1). The boundary conditions
were assumed to be clamped for nodes 15 and 16 and free for the rest of the nodes, since the

structure was supported as illustrated in fig. 1. After the boundary conditions were applied the final
model was a 42-degree-of- freedom model.

2.2 Mass Distribution

The mass distribution of a non-uniform structure is a problem, that should by no means be
ignored. Here, two approaches were used. The first approach w_ to calculate an equivalent
internal diameter of the hollow links, such that the links had the measured mass. The links were

treated as uniform hollow tubes constructed with aluminum alloy with an equivalent length of
0.5m. The joints were modelled as a concentrated mass at the particular location and are treated as
rigid. The natural frequencies of this model were calculated and are presented in table 1. The
results were considered unsatisfactory and one of the links was disassembled for more insight to
the mass distribution of the link. In the second approach, the real internal diameter of the links was

used and the excessive mass was distributed to the nodes accordingly. The resulting natural
frequencies of the model are compared to the experimental results in table 1. The finite element

model was constructed using a finer grid which include more nodal points, specifically an
additional nodal point at the mid-point of each link. The resulting model after the boundary
conditions were applied was a 126-degree-of-freedom model.

It can be concluded that the 45-node(126-dof) model is not significantly better than the 16-
node(42-dof) model in predicting the first fourteen natural frequencies. Therefore, it was found
unnecessary to use the 45-node(126-dof) model in the determination of the control design of the
structure, since the 16-node(42-dof) model was as accurate.
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Table 1
the structure.

Uniform wa_ distribution

42dof

Fro aency in Hz

FEM
Corrected mass distribution

42dof 126dof 14dof

: Comparison of the theoretical and experimental natural frequencies of

TEST I (rot accel)SDOF analysis

1 1.38 1.045 1.048 1.039 1.07
2 4.56 3.467 3.468 3.469 3.54
3 10.88 8.050 8.050 8.051 7.94
4 26.98 19.894 19.894 19.902
5 29.68 21.746 21.748 21.750
6 30.94 22.077 22.074 22.087 22.54
7 42.63 30.468 30.472 30.477 32.61
8 53.79 39.268 39.252 39.326 40.35
9 68.46 48.524 48.521 48.552 -
10 72.61 51.746 51.704 51.842 52.51
11 82.93 58.645 58.629 58.718 61.41
12 101.93 71.169 71.116 71.275 65.62
13 102.88 72.090 72.039 72.285 78.24
14 116.52 80.741 80.610 80.920 91.74
15 236.64 219.856 183.903 187.13

2.3 Model Reduction
Most of the control algorithms are designed for first order systems. Transforming the 16-

node(42-doD model in the state space results in a 84-dofstate space matrix. This matrix is quite
large, and it was found that it is difficult to manipulate in vibration prediction, and control
algorithms. Therefore, it was necessary to reduce the order of the model before performing control
analysis and designing a control law. From the configuration of the model the rotational degrees of
freedom can be considered as less significant than the translational ones, and can be eliminated

from the model by using the Guyan reduction method 3. The resulting reduced order model is a
14-dof model. Eigenvalue analysis of this model showed that this model maintained the first
fourteen natural frequencies of the larger model quite accurately. The damping ratios determined
from the modal test were used in the construction of the system's damping matrix, by assuming

that the system exhibited normal mode behavior. The damping matrix is calculated by the

following equation:

D = MUFdiag(2_io3i)UF "1 (1)

where U F is the eigenvector matrix of M" 1K, and _iare the experimentally obtained damping
ratios. The final reduced order model is described by the following equation:

M_(t) +D¢l(t) + Kq(t)" 0 (2)
This equation describes only the dynamic characteristics of the structure. The actuator dynamics
were considered important and they were included in the dynamic model.

2.4 Actuator Dynamics
The actuator that was used in this experiment was the NASA/UVA/UB proof mass

actuator, presented in fig.2. The actuator system is comprised of a movable proof mass (mpr f =

0.225Kg), a fixed coil that applies an electromagnetic force on the proof mass, an analog interface
board, a power amplifier and a linear variable differential transformer (LVDT) sensor. The LVDT
transducer is an electromechanical transducer that measures the relative position of the proof mass

with respect to the actuator housing. The actuator can be modelled as single degree of freedom
mass-spring system, with a variable electronic stiffness and the ability to apply a force on the
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structure at the attachment point. An equal and opposite force is applied on the proof mass of the

actuator. The actuator is space-realizable in the sense that it does not have to be attached to the

ground. The equations of motion are written by taking into account the actuator dynamics 15
Let's assume that the actuator is attached to the structure at the ith nodal point. The global system
that includes both the structure and the actuator dynamics, is of higher order, equal to the order of

the original system plus the order of the actuator dynamics, and it is described by:

E°' °1I ] E!ll°,l[g q+ + = fg (3a)
0 mpr

0-cact0 c.c,.I /lp -lhct 0 k.c

where qDrr is the displacement of the proof mass (mprf), the scalars kact and c_ are the stiffness and
damping of the electronic spring of the actuator, mpa r is the parasitic mass of the actuator, fg is
force generated by the actuator, and the matrices MI,DI and K l are the following matrices:

M I = M + mpardiag[0,...,0,1,0,...,0] (3b)
K 1 K + kactdiag[0,...,0,1,0,...,0] (3c)
D l = D + Cactdiag[0,...,0,1,0,...,0] (3d)

This is referred to as the open-loop system and the mass, damping and stiffness matrices are
denoted by subscript (oI.) for convenience. Note that the non-zero elements correspond to the ith

row or/and column of the particular matrix or vector of the previous set of equations. The force fg
is the actuator-generated force applied on the structure. The electronic stiffness of the actuator can
be selected in a variety of ways for various design approaches.

3. Passive Control Design
3.1 Structural Modification Design

The parasitic mass of the actuator housing has the same effect as adding a dead parasitic
mass at the point of attachment. Increasing the mass of the structure is a structural modification,
with the direct effect of reducing the lower natural frequencies of the system. The natural
frequencies of the new model with the dead mass were examined both theoretically and
experimentally, and the results are tabulated in table 2. The experimental results are presented in
the form of point and transfer inertance (transfer function) plots. The transfer function of nodes 1
and 8, of both the original structure and the modified structure are presented in fig.3 and fig.4
respectively. The effect of attaching the PMA (inactive) was also examined. This configuration is
equivalent of having a dead mass equal to the parasitic mass of the actuator housing plus the proof
mass. However, when the actuator's electronic stiffness is activated, the proof mass becomes an

additional degree of freedom, and it is not part of the parasitic mass any longer.
The results indicate that the modified structure has lower natural frequencies than the

original structure. This is true for the first five structural modes as indicated in the table above.
The experimental frequency response plots show that the level of the vibration response was
reduced considerably, especially in the lower frequency region.

If the design methodology was limited to structural modification, it will be considered
necessary to examine the effect of adding the dead mass at different nodal points. The results are
presented in table 3. The design criterion that was used to place the actuator was to reduce the
overall vibration level at node 1, because a sensitive device will be attached at that point. The

actuator cannot be placed at node 1 because there is no room. Note that different design criterion
results in different locations of the actuator. Placing the actuator at node 10 doesn't reduce the
vibration at node 1 at all. Nodes 2, 3, and 4 have the same effect in reducing the vibration level of
node 1. But the first structural mode is shifted at 0.92 Hz. This was considered undesirable

because it is hard to control the low frequencies by active control. Placing the actuator at nodes 6,7
and 8 has the same effect in reducing the vibration level of node 1 and the first structural mode is
not shifted considerably. Therefore, any of nodes 6,7, and 8 can be used as an "optimal" location
of the actuator. The results that follow are for placing the actuator at node 8.
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Table 2 : Comparison of the theoretical and experimental natural frequencies of
the structure with and without the parasitic mass.

FEM [ TEST I

w/o w [ w/o w dead mass w PMA inactive

Frequency in I-Iz

I 1.04 0.97 1.07 1.01 1.02

2 3.47 2.94 3.54 3.09 2.96

3 8.05 8.00 7.94 7.69 7.88

4 19.90 16.42 - 17.01 16.03

5 21.75 21.44 - 22.39

6 22.09 22.06 22.54 22.02 23.50

7 30.48 28.53 32.61 30.08 29.50

8 39.33 39.12 40.35 39.78 39.33

9 48.55 46.40 - - -

I0 51.84 51.45 52.51 49.31 50.68

II 58.72 58.52 61.41 54.57 57.36

12 71.27 70.71 65.62 65.02 66.29

13 72.28 72.28 78.24 77.73 78.41

14 80.92 80.74 91.74 84.8 -

Table 3 : Comparison of the theoretical natural frequencies of the structure with

the parasitic mass at various nodal points.
FEM

w/o 8 2 3 4 5 6 7 I0

Frequency inHz
1 1.04 0.97 0.93 0.93 0.92 0.98 0.98 0.98 1.01
2 3.47 2.94 3.39 3.40 2.94 2.96 3.41 3.40 3.42
3 8.05 8.00 7.71 7.66 7.65 7.95 7.93 7.95 7.28
4 19.90 16.42 18.25 18.41 17.47 15.54 19.84 19.88 19.52
5 21.75 21.44 21.74 21.45 20.17 21.75 20.52 20.24 20.52
6 22.09 22.06 21.98 22.07 21.77 21.96 21.94 21.75 22.00

7 30.48 28.53 30.09 30.02 29.60 27.79 30.07 30.43 29.83

8 39.33 39.12 39.17 38.15 37.87 36.87 39.30 38.92 37.06

9 48.55 46.40 45.12 46.65 48.35 48.35 43.27 45.40 43.03

I0 51.84 51.45 51.67 49.02 49.76 50.89 49.56 51.40 51.83

II 58.72 58.52 54.15 57.71 58.47 58.54 58.60 56.68 56.07

12 71.27 70.71 68.85 68.34 70.27 70.62 67.91 68.31 68.53

13 72.28 72.28 71.87 72,26 72.26 72.09 71.67 72.23 71.34

14 80.92 80.74 80.44 80.13 80.69 80.67 79.27 79.27 77.81

3.2 Vibration absorber design
There are several criteria for tuning the absorber to a MDOF structure. The simplest

criterion is to tune the natural frequency of the absorber to exactly one of the natural frequencies of

the structure 18, that is:

t_.- _ (4a)

The designof thedamped absorberresultsinan optimaltuned frequencygiven by18:

_o.- _ (41))
1+il I
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where_ti is the ratio of the mass of the absorber (here, the proof mass) over the mass of the SDOF

structure (here, the modal mass at mode to). The ratio th or the modal mass can be calculated in a
trial and error procedure. The difficulty of applying the second method is the fact that it is difficult

to determine the optimal value for tt for the higher modes 22

An optimal tuning criterion for MDOF systems was presented in reference [19]. The

absorber frequency (toa) and damping coefficient (c a) are given by:

toa2 ffi toi2 1+_t (5a)
( 1+[lt+/.ta) 2

Ca2 ----ma2toi2_,l a 1+_1t (5b)
( 1+_ t+_ aP

where,

tlt -- mt4_. 2 and _la= ma4_. 2 (5c)
The scalars m t and m a are the parasitic mass and the mass of the absorber, respectively, and the

scalar 4)ijis the jth entry of the associated eigenvector of the ith mode, where j is the degree of
freedom corresponding to the location of the absorber. Note that the eigenvectors derived form the
finite element model, are normalized with respect to the mass matrix.

3.2.2 Experimental implementation of the passive control design
The stiffness of the PMA can be electronically varied, such that the actuator system can be

tuned to different frequencies. The PMA was attached to ground, and the LVDT signal was
examined for random signal input that generates an electromagnetic force on the proof mass. The
LVDT signal gives the relative position of the proof mass with respect to the housing of the
actuator. As it can be clearly seen in the experimental bode plot in fig.5, the PMA system is well
modelled by a SDOF system, with a natural frequency depending on the gain that determines the

electronic stiffness. The stiffness is a function of the external gain (¢x), and other electromagnetic

constants of the coil and the amplifier (included in the factor K). The natural frequency of the
system is given by:

toa = 1/27r_cxK/mprf (6)
The damping in the actuator was identified as Coulomb damping due to the friction in the

bearings. An equivalent viscous coefficient was calculated from the frequency response functions
of the LVDT signal at particular tuning frequencies. It was found that the lower the tuning
frequency becomes, the higher the equivalent damping becomes. This is actually due to the fact
that at low frequencies the proof mass of the actuator cannot overcome the friction. As a
consequence, the natural frequency of the SDOF model of the actuator dynamics cannot go lower
than a certain frequency, since the stiffness is electronically determined and it depends on the
relative motion of the proof mass with respect to the housing of the actuator. It was found that the
actuator system behaves like an overdamped system when tuned to frequencies below 8 Hz.
Therefore, it was practically impossible to tune the actuator to frequencies lower than 8 Hz. Note
that, this range includes the three lower natural frequencies of the modified structure. Therefore,
the PMA is tuned to the fourth mode, by using the criteria described above. The results from only
the second criterion are presented here in the top part of fig.6, due to the fact that the plots from the
simple criterion (equation 4a) and the optimal tuning criterion (equation 5) were very similar. It can
be clearly seen that the vibration response is clearly reduced.

4. Active Control design

The active control law is implemented, by using one actuator and two sensors. The force
generator signal of the actuator was then given by:
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f, = FCy(t) (7)

where F'the feedback gain matrix and C the output matrix. The sensors were placed at node 1 and
node 4 as indicated in fig.l. Node I was chosen because this is the possible point of attachment of
a sensitive device, where the vibration level is required to be reduced. Node 4 was chosen,
because it moves in the opposite direction of node 1, when the structure is excited at one of its
rotational modes. Here, accelerometers were used and their signals were integrated once by an
analog computer, to give the corresponding velocity signals. The output position matrix was
therefore zero, and the velocity output matrix was of the form:

[ i 01xl4 ] (8)Clffi 0ix 3 1 01xll.j

The gain matrix is therefore given by:
F ffi [gt : g2] (9)

where gl and g2 are the two gains to be determined. Substituting into the previous equation results
in:

[ 1 0 ]Ix I 4 tl(t) (10)
fs =F 0ix 3 1 01xll

The closed-loop system written in physical coordinate system, is given by the following equation:

MOL/_(t ) +DoL¢I(t) + Kogq(t ) = BoLFCI¢I(t) (11)

The objective here is to calculate the gain matrix F such that the system has poles at the desired
locations. The right hand side of the previous equation is expanded as:

0 E01 1[!1] _ 1 01x141_ gl 0 0 g2 01xll (12)BoLFC1 = [gl:g2] 0ix3 1 01xll_l 06x15

gl 0 0 -g2 01xll

Note that this is a square sparse asymmetric matrix with only four non-zero elements. This results
in a closed-loop system damping matrix of the form:

Dc L = - ct + gl 0 006x15g2 01xlt (13)

-Cac tO Cacbl glO 0 -g2 Oixll

where Cact, corresponds to the equivalent viscous damping coefficient of the actuator system.

The objective here, was to decrease the amplitude of the vibration response at the low
modes that have high participation factors. Note that, direct pole placement design could not be
applied since with one actuator and two sensors, only one closed-loop pole can be placed. The
gains were determined in an ad hoc design, from an algorithm that covered a broad region of
values, with the main objective to move the lower two poles further in the LHS complex plane.
The results are presented in table 6. It can be clearly seen that the closed-loop system is stable
when the two gains gl and gz, are in the region -10 to l0 and 0 to 15 respectively. A finer grid
that covered the part of the stable region, where the damping of the first two modes was increased

(gl from 0 to 10 and g2 from 10 to 20) was also examined 22.

It was discovered that the "optimal "gain of F = [5 : 15] increases the damping on modes
1, 2, 4, 5, 6 and decreases the damping at mode 3. Note that, further increase of the gains towards

the "optimal" direction, resulted in an unstable closed-loop system. The experimentally obtained
transfer functions of nodes 1 and 8, are presented in fig.6, and they are compared directly with the
open-loop system, tuned to the fourth structural mode. The results show clearly, a decrease in the
response at modes 1 and 2. The decrease of the vibration response is not very large as desired,
because of the following reasons:
(i) By using only one actuator and two sensors, we can only affect 4 elements ofthe 15x15 closed-
loop damping matrix.
(ii) Further increase in the gains towards the "optimal "direction drives the third mode unstable.
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(iii) We are trying to control a flexible structure with many significant modes that cannot be
ignored.
(iv) We are only using velocity feedback

It was also illustrated experimentally that by increasing the gains at higher values drove the

proof mass system unstable.

Table 6 : Determination of the feedback gain matrix

g2 gl
-20 -15 -I0 -5 0 5 10 15 20 25 30 [

-20 U U U U U U U U U U U
-15 U U U U U U U U U U U
-10 U U U U U U U U U U U
-5 U U U U U U U U U U U
0 U U U S S U U U U U U
5 U U S S S S U U U U U
10 U U U S S S S U U U U
15 U U U U S S U U U U U
20 U U U U U U U U U U U

U = unstable, S = stable.

5. Closing Remarks
An experimental flexible planar truss structure was modelled and successfully controlled in

a passive and active way by using a space realizable linear proof mass actuator system. The PMA
was attached to the truss at a desired location, and tuned as traditional vibration absorber to one of

the structural modes of the truss by using several criteria. The actuator dynamics were
successfully modelled and taken into consideration in the design of the passive and active control
law. The active control design was adopted in the form of output velocity feedback by integrating
the signals of two accelerometers, attached to the structure. The limitations of this method were
indicated and difficulties of applying output feedback on large flexible structures with several

significant modes are identified and pointed out.
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Simulation Studles Using Multlbody Dynamlcs Code DART

James E, Keat

Photon Research Associates, Inc.

Abstract

DART is a multibody dynamics code developed by Photon Research
Associates for the Air Force Astronautics Laboratory (AFAL). The

code is intended primarily to simulate the dynamics of large space
structures, particularly during the deployment phase of their

missions. DART integrates nonlinear equations of motion

numerically. The number of bodies in the system being simulated is

arbitrary. The bodies' interconnection joints can have an arbitrary

number of degrees of freedom between 0 and 6. Motions across the

joints can be large. Provision for simulating on-board control

systems is provided. Conservation of energy and momentum, when
applicable, are used to evaluate DART's performance.

After a brief description of DART, the paper describes studies

made to test the program prior to its delivery to AFAL. Three
stuclies are described. The first is a large angle reorientating of a

flexible spacecraft consisting of a rigid central hub and four flexible
booms. Reorientation was accomplished by asingle-cyclesine wave

shape torque input. In the second study, an appendage, mounted on a

spacecraft, was slewed through a large angle. Four closed-loop
control systems provided control of this appendage and of the

spacecraft's attitude. The third study simulated the deployment of

the rim of a bicycle wheel configuration large space structure. This

system contained 18 bodies. An interesting and unexpected feature
of the dynamics was a pulsing phenomena experienced by the stays

whose playout was used to control the deployment.
The paper concludes with a short description of the current

status of DART.
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On Trajectory Generation for Flexible Space Crane:

Inverse Dynamics Analysis by LATDYN

G-S. Chen
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S-C. Wu and C-W. Chang
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Abstract

For future in-space construction facility, one or more space

cranes capable of manipulating and positioning large and massive

spacecraft components will be needed. Because the space systems

being constructed are relatively large and massive, the space cranes

must have a reach on the order of 100-meter and be made of truss-

type construction for structural efficiency. In order to optimize space

crane's performance, an operational strategy consisting of gross=

motion and fine-motion phases was proposed. Under this strategy, a

space crane is commanded into position in a relatively fast pre-

planned trajectory with relaxed requirements, and then "rigidized"

by bracing against either the workpiece or an auxiliary support

structure. After bracing, the subsequent fine motion will not involve

the major crane bodies, and the precision movements between the

workpieces can be performed without the adverse flexible crane

body effect.

Inverse dynamics has been extensively studied as a basis for

trajectory generation and control of robot manipulators. This paper

will focus on trajectory generation in the gross-motion phase of space

crane operation. Inverse dynamics of the flexible crane body is much

more complex and intricate as compared with a rigid robot link. To

model and solve the space crane's inverse dynamics problem,

LATDYN program which employs a three-dimensional finite element

formulation for the multibody truss-type structures will be used.

The formulation is oriented toward a joint dominated structure which

is suitable for the proposed space crane concept. To track a planned
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trajectory, procedures will be developed to obtain the actuation

profile and dynamics envelope which are pertinent to the design and

performance requirements of the space crane concept.
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MINIMUM ATTAINABLE RMS ATTITUDE ERROR

USING CO-LOCATED RATE SENSORS

A. V. Balakrishnant

Abstract

In this paper we announce a closed form analytical expression for the minimum attain-

able attitude error (as well as the error rate) in a flexible beam by feedback control using

co-located rate sensors. For simplicity, we consider a beam clamped at one end with an

offset mass (antenna) at the other end where the controls and sensors are located. Both

control moment generators and force actuators are provided. The results apply to any beam-

like lattice-type truss, and provide the kind of performance criteria needed under CSI --

Controls-Structures-Integrated optimization.

t Research Supported in part under NAS1-18585 Task Assignment 49.
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1. Introduction

One of the challenges in the Design Challenge For Flexible Flight Structure Control

System Design formulated in the inaugural paper on SCOLE [1] was to hold the antenna

pointing error within £-0.02 degrees after slewing by appropriate feedback control. In this

paper we derive a closed form expression for the minimal achievable mean square pointing

error using co-located rate sensors. A slightly simplified form of the SCOLE article (which

eliminates rigid-body modes) is used: a cantilevered beam with an offset mass where the

controls -- both c.m.g.'s and force actuators m and the rate sensors are located. Our results

are in terms of continuum model parameters -- the uniform Bernoulli version is used. The

beam dynamics are given in Section 2. The main results are in Section 3. We note that a

technique for deriving equivalent Bernoulli beam parameters for various types of trusses is

described by Noor and Anderson in [4]. Recently Noor and Russell [5] presented equivalent

anisotropic Timoshenko beam models for beam-like lattice trusses with an arbitrary degree of

modal coupling, which appear to yield excellent agreement with modal frequencies derived

from finite element models. Our theory is able to handle these Timoshenko models, and

moreover we can also use it for rigid-body modes, although they are not included here. Thus

our results can be used for any beam-like lattice truss structure.
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2. The Model

We consider a uniform Bernoulli beam clamped at one end with an offset mass (antenna)

at the other end which also houses the sensors and actuators. See Figure I. We allow for both

force actuators and moment actuators. The sensors are rate gyros. Because of the clamping at

one end, no rigid-body modes are involved and hence no attitude sensors are needed.

We allow bending in two mutually perpendicular planes containing the beam axis, as

well as torsion in the plane perpendicular to the beam axis, all uncoupled. The continuum

model (uniform Beroulli beam) dynamics can then be described by the following partial differ-

ential equations (similar to those in [2, 3]). Let the beam extend along the z-axis, 0 < s < L,

and let u¢(s, t), uo(s, t), denote the bending displacements and uw(s, t) the torsion angle

about the beam axis. Let in the usual notation (cf. [1]), Ei¢_, E!o denote the flexural stiffness

and GI v the torsional rigidity. Let p denote the mass per unit area and A the cross-sectional

area. Then we have:

iFu_(s, t) _u+(s, t)
oA _t 2 + Ei_ _s 4 = 0, 0<s<L; 0<t

i:uo(s, 0 _4uo(s, 0
pA _t 2 + E! o _s 4 = O, 0<s<L; 0<t

iFu_ (s, t) Glvuv(s, t) = 0 0 < s < L" 0 < tPly 3 t2 " ' '

with the clamped boundary conditions at s = 0:

u_(0,0 = uo(0,0 -- uv(0,0 = 0

u_(O,0 - ud(O, t) - O .

The antenna center of gravity is located at

(r_, ry, L).

The distance from the beam tip to antenna center of gravity is denoted by
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L m_

Figure 1: Shuttle/Antenna Configuration
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The force balance equation at s = L yields

m

/i, (L,O

iie (L,O

/_(L, 0

+ f_(t)If2Ct) = Eleu;"CL'O[E1eu_"(L, 0

where m is the antenna mass and j_(.),f2(')are the appliedcontrolforces.The torque

balance equations yield

O

El, u_'(L, t)

El eud' (L,r)

al_ "4 (L, 0

+ /,6 + MC0 +r®

/ie (L, t) + rx/i v (L, 0 [+ r@ fie(L, 0 +ry/i_(L,t)

where the superdots indicate time derivatives and the primes the derivatives with respect to

the spatial variable s; ® denotes the vector cross-product and co the angular rate vector

(L,O
= _o'(L,t) ,

_CL, t)

]a denotes the moment of inertia of the antenna about the beam tip (s = L) and finally, M(t)

denotes the applied control moment.

It is convenient to denote by b(t) the boundary vector:

u, (L, 0

u e (L,t)

t

b(t) ffi u¢ (L, t)

ud (L, t)

u_ (L, t)

The boundary rate vector would thus be t,(t). Hence our sensor model is:

vCt) -- b(O + No(t)

where we assume that No(r) is white Gaussian noise with spectral density matrix dol, where

I is the identity (5×5) matrix. Similarly we assume that the control actuators are also
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characterized by additive white Gaussian noise. Denoting the applied control vector by u(t):

uffL, 0

u2(L, t)

u(O - u3(L, 0

u4(L, t)

us(L, 0

we have

f 1(t)

f 2(t) = u(t) + Ns( 0

M(t)

where Ns(t) is white Gaussian with spectral density ds . We shall also use M b to denote the

actuator mass/inertia matrix

M b ,-

m 0

0 m

0 0

0 0

rllr x i11ry

0 0 mr x

0 0 mry

/a

where

A

I. -I. +

,_ -_,_y 0

-r, ry r_ 0

o o

where !a is the antenna moment of inertia about its center of gravity. For any control input

u(') (which must perforce be a "feedback" control, based on the sensor data v(.)) the mean

square pointing error is then expressed by:

• l{ T T T }lira _ f %(L, 0 2dr + f ue(L,O 2dr + Irl2f uv(C,O 2dr
T'_ 0 0 0

and the mean square pointing rate is given by
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r T }l im _ f i%(L,O 2dt + f i_o(L,O 2tit + Irl2f _qv(L,O 2dt .
T-po* 0 0 0

From the results in [6] it follows that the minimal attainable mean square pointing error is

given by

a/_;la *

where

a = row vector (1, 1, O, O, Irl)

a* - transpose of a

3. Main Results

We need some notation first. The mean square attitude response, whatever the feed-

back control used is defined by

l{, , , )l im _ f u,(,, g)2 dt + f Uo(t, g)2 dt + [rl2 f uw(t , g)2 dt . (3.1)
T_** 0 0 0

This is recognized as the mean square displacement of the center of gravity of the antenna

which is then also proportional to the mean square "pointing" error -- see [1] for the

relationships.

Next let u denote any (vector) of control inputs -- a constant "step" input:

Ul

u2

u = u3 (3.1)

u4

U5

Solve the equations

El, u_'"(s) = 0 ]

glou_'"(s) .= 0

)p

Gi_¢ u w(s) .. 0

0 < s < L, (3.2)
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subjectto theendconditions

Zl,u_"(L)- u_

Elou_"(L)- u2

EI,,,;'(L)+ "3 - 0

Eleu_'(L) + u4 = 0

(3.3)

Glvu;(L) + us - 0

Note that the solution can be recognized as the steady-state response of the system to the

step-input u, assuming that there is somedamping. We only need to calculate the response to

three specialized inputs:

Calculate the response to u,(L) to the special case, Case 1, where:

Ul - 1

ui - 0, 2</<5.

Calculate the response uo(L) to the special case, Case 2, where:

ul - 0

u2 - I

us = u4 - us = O.

Calculate the response uv (L) to the special case, Case 3, where

ul - u2 - us - u4 - 0

u6 - 1.

Then the minimal achievable mean-square response whatever the choice of the feedback and

whatever the mean-square control effort, is given by

_,do (u,(L)2 + ue(L)2 + :_(L) 2) • (3.4)

This is our main result. Unfortunately the derivation is beyond the scope of this report and
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will be published elsewhere. To proceed further with (3.4) we calculate the solution of (3.2),

(3.3) explicitly. Thus for any u, the solution is of the form

where

Thus for Case 1 we have

and for Case 2 we have

u_,(s)..as: + a2s2 ,

Uo(S)- bs: + I_:,

._(s)- c:,

and for Case 3:

I _ U2
6El o

I us+El, ja2 = 2 El,

I u4
tu- _[Elo "_]+ Eio.I

Cl . gs
G! v

ue(L) 2 " 3Ela

L

uv(L)2 - GTv

Hence the mean-square attitude error

{ "J J l

0<s<L

0<s<L

0<s<L

O-s)

Note the appearance of the noise parameters in 0.5) in product form.

The technique for calculating the minimal mean square atttimte error in more complex

models than that illustrated is the same: calculate the mean square step response (assuming
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somedamping)to unit step inputs.

In conclusion we suggest this result (3.5) can be the basis for combined structures-

controls optimization -- CSI, since the required structural parameters can be calculated for a

lattice truss from the material gage and physical dimensions as in [4, 5]. We omit the details

of these calculations.
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ABSTRACT

The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems
in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and
analyzed. Their characteristics arc identified and a scheme on the mapping of these algorithms to a reconfigurable
parallel architecture is presenled. Based on the characteristics including type of parallelism, degree of parallelism,
uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is
shown that most of the algorithms for robotic computations possess highly regular properties and some common
structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-
instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model
of a reconligurable dual network SIMD machine with internal direct feedback is introduced. A systematic pro-
cedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD
machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing
sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are
illustrated and discussed.

1. Introduction

Robot manipulators are highly nonlinear systems and their dynamic performance is directly dependent on the
efficiency of tic kinematic and dynamic models, the control schemes/algorithms, and the computer architecture for
computing the control schemes. In general, robot manipulators are usually servoed in the joint-variable space while

the objects to be manipulated are usually expressed in the world (or Cartesian) coordinate system. In order to con-
trol the position and orientation of the manipulator end-effector, the robot controller is required to compute, at a
sufficient rate, such tasks as coordinate transformation between the joint-variable space and the Cartesian space,
generalized forces/torques to drive the joint motors, the manipulator inertia matrix for model-based control schemes,
and the Jacobian matrix which relates the joint velocity in the joint-variable space to the Cartesian space. These are

the basic robotic computations for the control of robot manipulators. They are equivalent to the computations of
kinematics, dynamics, Jacobian, and their corresponding inverses. These six basic robotics computations are
required at various stages of robot arm control and computer simulation of robot motion, and reveal a basic charac-
teristic and common problem in robot manipulator control -- intensive computations with a high level of data
dependency. They have become major computational bottlenecks in the control of robot manipulators. Despite
their impressive speed, conventional general-purpose uniprocessor computers cannot efficiently handle the kinemat-
ics and dynamics computations at the required computation rate because their architectures limit them to a mostly
serial approach to computation. Furthermore, less efficient, serial computational algorithms must be used to com-
pute these robotics computations on a uniprocessor computer. Consequently, the quest for real-time robot arm con-
trol and motion simulation rests on the study and development of parallel algorithms of lower computational com-

plexity with faster computational structures. The ultimate goal is to achieve an order-of-magnitude and/or an
order-of-complexity improvement in computational efficiency in these robotics computations by taking advantage of

parallelism, pipelining, and architectures.

A common feature of today's research on robotic computational problems is that a specific problem, mostly
the inverse dynamics or the inverse kinematics, is studied at a time, and usually an algorithmically-specialized
architecture or processor is developed for that particular algorithm. Obviously, this specialized architecture can
make the most use of the parallel properties of the algorithm. However, most advanced robot control schemes
always require to solve a combination of some or all of the six basic robotic computations. One solution for this
problem is to wire these specialized architectures or processors together. This method is inflexible because the com-
bination of these components is dedicated to a particular conuol scheme and cannot be used efficiently for another
scheme. Another solution is to connect the architectures or processors to a bus as peripherals of a general-purpose

computer. This is more flexible, but the bus becomes a bottleneck and time is wasted in data movements between
different computational processes. Another possible solution is focussed on partitioning the original algorithm/task
into a set of subtasks with precedence relationship and then developing efficient scheduling algorithms to map these



subtasksontoageneral-purposemultiprocessorsystem.Thissolutionismuchmoreflexiblebecausemostcomputa-
tionalalgorithmscanberepresentedbydirectedtaskgraphs.However,thisapproachmayresultin ignoringsome
inherentparallelisminroboticsalgorithms.

Inthispaper,weshalladdresstheseroboticcomputationalproblems,andmajoreffortisfocussedonfindinga
schemewhichprovidestheflexibilityneededto solveroboticcomputationalproblemsonthesamearchitecture
whilemaintaininghighefficiencybytakingintoaccounttheinherentparallelismofroboticsalgorithms.Toexploit
theinherentparallelismof theseroboticsalgorithms,ourapproachis firsttocharacterizethesetofparallelrobotic
algorithmsbasedonthesixspecifiedcharacteristicsandfeatures,includingtypeof parallelism,degreeofparallel-
ism,uniformityof theoperations,fundamentaloperations,datadependency,andcommunicationrequirement.Our
analysisshowsthatmachinesoperatinginthesingle-instruction-streammultiple-dam-stream(SIMD)modearethe
mostefficientandsuitableforourroboticalgorithmg.Byfullyconsideringthecommoncharacteristicsandinherent
parallelismof theroboticsalgorithms,a prototypeof a medium-grained,reconfigurable,dual-network,SIMD
machinewithinternaldirectfeedbackhasbeendesignedforthecomputationof thesekinematicanddynamiccom-
putationaltasks.A systematicmappingprocedurehasbeendevelopedforschedulingtheseroboticcomputational
tasksontotheproposedSIMDmachine.Thisprocedurebuildsatasktablewhichcontainsthesubtaskassignment
fromtheoriginalparallelalgorithm.Thenasimplifiedtasktableandaninputtableareproducedthroughthenota-
tionsimplification.Thesetwotablesarethenusedasinputstotheneighborhoodschedulingalgorithmwhichreord-
erstheprocessingsequenceofthesubtasksintoarescheduledtasktabletoreducethecommunicationtime.Finally,
thesubtasksin thisrescheduledtasktablearemappedontotheproposedSIMDmachineandacontroltablewhich
describesthecontrolsequenceinthemachineisproduced.Abenchmarkalgorithmwhichcontainsthecharacteris-
ticsof thesixbasicroboticcomputationshasbeenimplementedontheproposedSIMDmachine,andthemapping
resultsareincludedfordiscussion.

2. CharacterisUcs of Parallel Algorithms

A key factor to the design of a parallel architecture for a group of algorithms is the understanding of their
architectural requirements, and this requires us to identify the characteristics of these algorithms. This identification
is usually helpful because the algorithms from a given application area such as robotics often possess an identifiable
structure. In order to examine the characteristics of the six basic robotics parallel algorithms, a set of features which
have the greatest effects on the execution of paraUel algorithms is defined for robotics application [1].

• Type of parallelism. Two levels of parallelism can be identified.

(a) Job-level parallelism. The original algorithm is reformulated to a parallel processable form. In this level,

the variables carrying the same kind of information but with different indices (e.g., for different links or
joints of a manipulator) are processed parallelly. Due to the nature of the robot's serial link structure, vari-

ables representing the same physical meaning are defined for each link such as joint velocities, joint
accelerations, and joint torques. Usually, the same class of variables are produced through an identical
computational procedure but with different set of data. This property is called uniformity of operations as
defined below. So the job-level parallelism will often be amenable to the SIMD implementation and usu-
ally the required number of processors depends on the number of degrees of freedom of the manipulator
(i.e., one processor for each joint).

(b) Task-level parallelism. The original algorithm is decomposed into multiple subtasks. While the computa-

tion within a subtask is serial, the number of subtasks that can be processed concurrently is maximized by
using some scheduling techniques. Obviously, this implies multiple-instruction-stream multiple-data-
stream (MIMD) operations. Furthermore, for this level of parallelism, a subtask usually performs the same
computation for different set of data, and hence the operation can be pipelined. An advantage of this task-
level parallelism is that the required number of processors is independent of the number of degrees of free-
dom of the manipulator.

• Degree of parallelism (Granularity). Three levels of granularity are distinguished. In the large grain granular-
ity, the parallelism is performed at the algorithmic level. That is, only the parallelism between different seg-
ments or subtasks is considered. For the medium grain granularity, the concurrency is considered at the opera-
tion level and the parallelism is performed based on some basic mathematical operations such as vector cross
product and matrix-vector multiplication. If we consider the implementation of parallelism within the basic

arithmetic operations, then the fine grain granularity is achieved. Different degrees of parallelism often imply
different synchronization requirements. The finer the granularity is, the more frequent synchronization is
required.

• Uniformity of operations. A robotics algorithm is said to possess uniformity of operations if the required com-
putations for some set of variables, especially the joint variables, are uniform. An algorithm with operation uni-
formity can he implemented on an SIMD machine with higher efficiency.
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• Fundamental operations. Algorithms in an applicationarea usuallyperform similar mathematical operations.
The identification of basic operations performed in the algorithm will dictate the processor capabilities needed.

• Data dependency. Three kinds of data dependency are classified for robotics algorithms: local neighborhood
dependency, special type dependency, and global dependency. The local dependency means that the required
operands in an operation come from its neighborhood; for example, from the results of last operation or using
the same operands of last operation. The special type dependency is defined for some special equation or prob-
lem. There are some special types of data dependency that are peculiar and inherent to the robotics algorithms.
Among them, the homogeneous (or hetero-homogeneous) linear recursive type of dependency which describes
the data dependency in a homogeneous (or hetero-homogeneous) linear recursive equation appears most fre-
quently. This linear recurrence structure plays a major role in the robotics algorithms because the variables of a
joint are usually related to the corresponding variables of its adjacent joint due to the robot's serial link structure.
Other special types of data dependency are defined for some well-known problems; for example, system of
linear equations and Column-Sweeping algorithm for a triangular linear system. The global dependency means
that the results of some operations may be required by other operations or equations that may appear in other
places of the algorithm. Since few algorithms possess absolutely one kind of data dependency, we can just iden-
tify whether an algorithm is local data dependency oriented or noL The data dependency in an algorithm usually
dictates memory organization, data allocation, and communication requirements.

• Oommunicstion requirement. The communication requirement decides the required interconnection type
between processor and processor or between processor and memory. Three types of interconnection are con-
sidereal: one-to-one connection, permutation and broadcast connections. Of course, the exact required inter-
connection type for each computation in an algorithm depends on many factors such as task assignment of each
processor, data allocation in the memories, and data dependency of each computation. Hence, the exact
required interconnection type can only be decided at the time of the algorithm-architecture mapping process. In
examining the features of robotics parallel algorithms, only rough connection requirements can be observed.

3. Characterization of Basic Robotics Parallel Algorithms
Based on the above set of features, each of the six basic robotics algorithms have been carefully examined

and analyzed to find the common features and characteristics among them [2]. Only the final results are presented
here, which are useful for better understanding of the robotics computations and for designing a suitable parallel
architecture for their computations.

Inverse Dymimlcs Problem. Among various methods for computing the inverse dynamics problem, the one based
on the Newton-Euler (NE) equations of motion is the most efficient [3]. Since this method has been shown to pos-
sess the time lower bound of O(n) running on uniprocessor computers, where n is the number of degrees-of-
freedom of the manipulator, further substantial improvements in computational efficiency appear unlikely.
Nevertheless, some improvements could be achieved by taking advantage of particular computation structures [4],
customized algorithmshu-chitectures for specific manipulators [5], parallel computations [6,7], and scheduling algo-
rithms for multiprocessor systems [8-11].

Forward Dynamics Problem. Among various methods for solving the forward dynamics problem [12-14], the
composite rigid-body method [12], based on the computation of the NE equations of motion, is widely used to
develop efficient parallel algorithms [14-16]. The composite rigid-body method is suitable for parallel processing
because efficient parallel algorithms for the inverse dynamics computation have been well developed and can be
used to speed up the computation time.

Forward Kinematics Problem. Using the Denavit-Hanenberg matrix representation for establishing the link coor-
dinate frames [17,18], the solution to the forward kinematics problem is the successive multiplication of the 4)<4
homogeneous link transformation matrices for an n-link manipulator

1 2 3 iT=AoAIA2 "'" Ai-l "'" A_-I (1)

where A_-I is the D-H link wansformation matrix which relates the ith coordinate flame to the (i-1)th coordinate
frame [17,18]. The above successive matrix multiplication equation can be reformulated in a homogeneous linear
refursive form

T_ = A_ and T_ -- "0'ri-l"i-l'i for i = 2, "'" , n , (2)

from which the configuration of all the coordinate frames can be obtained at the time lower bound [7,19,20].

Forward daooblsn Problem. Existing methods in computing the Jacobian are mostly confined to uniprocessor
computers. In particular, Orin/Schrader [21], and Yeung/Lee [22] exploited the linear recurrence characteristics of
the Jacobian equations. These methods differed from each other only by a different selection of the reference
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coordinate frame for computation. The reference coordinate frame is selected such that all the vectors and matrices
and the Jacobian computed are referred to that reference coordinate system. They all have the computational order
of O (n) for an n-jointed manipulator.

Inveree daeoblan Problem. The inverse Jacobian algorithms for a general manipulator can be divided into two

categories. One is to calculate the inverse or the generalized inverse Jacobian explicitly [23]. The other is to con-
sider the inverse Jacobian problem as a system of linear equations and solve the joint rate from the Cartesian velo-

city implicitly [24]. For practical purposes, the latter approach is easier to be parallelized due to the use of some
standard techniques to solve a system of linear equations such as the Ganssian elimination method.

Inveru Kinematics Problem. In general, the inverse kinematic position solution can be obtained by various tech-
niques [18], among which the inverse transform [25] and the iterative method [26] are widely discussed. The
inverse transform technique yields a set of explicit, non-iterative joint angle equations which involve multiplica-
tions, additions, square root, and transcendental function operations. The iterative methods can obtain robot
independent joint solution, but they usually have some disadvantages: more computations than the closed-form
solution, variable computation time and, more important, convergence problem, especially in the singular and
degenerate cases. We shall examine the characteristics of the inverse transform technique and the iterative methods.

The equations for closed-form solution appear highly non-uniform [27]. To achieve higher parallelism for the
inverse kinematics problem, the iterative method provides a better approach, since nearly every presented iterative
method contains the computations of forward kinematics, forward Jacobian, and inverse Jacobian [26], which have
been shown to be highly parallelized.

If we consider these six basic robotics computations as a set of tasks that we need to compute for the control

of robot manipulators, then we need to find their common features and characteristics so that a parallel architecture
can be designed to efficiently compute these tasks. The characteristics of the six basic robotics algorithms are tabu-
lated in Table 1 and it shows that these algorithms do possess some important common features and characteristics.
This is especially true for the inverse dynamics, the forward dynamics, the forward kinematics, and the forward
Jacobian computations for the following three reasons. First, they are all suitable to be parallelized at the job-level
and the parallelization can be performed at the large, medium, and fine grain granularities simultaneously, although
different granularities are emphasized in each individual algorithm. Second, their operations are all uniform for the
variables corresponding to each joint, and the most important fundamental operation is the matrix-vector operation.
Finally, the strongest common feature is that they are all in homogeneous linear recursive form, for which the re,cur-
sive doubling technique can be applied to achieve the time lower bound of O([log2n] ). The communication
requirement indicates that one-to-one and some regular or irregular permutation capabilities are required for these
four computational problems and the broadcast capability is necessary for the forward dynamics and the forward
Jacobian algorithms. This indicates that some efficient, versatile network is required in the parallel architecture for
their computations.

The inverse Jacobian and the inverse kinematics computations may seem less common to the above four algo-
rithms. However, if less efficient methods to solve these two problems are chosen individually, then these two algo-
rithms may possess some common features to the other four algorithms, and a common parallel architecture can be
designed to match all these common characteristics for their computations. From previous discussions, we found
that either the direct method or the iterative method for the inverse Jacobian is a proper candidate for parallel pro-
cessing, while the direct method is more efficient with somewhat complex data dependencies. For the inverse
kinematics problem, only the iterative method possesses regular properties similar to the other four computations.

With all the characteristics listed in Table 1, we shall next examine how to reformulate and parallelize these
robotics algorithms from their original serial algorithms by complying to their common features [2]. The paralleli-
zation process is performed at the job level; that is, we try to express the original algorithms as a sequence of serial
steps (jobs). Each individual step is accomplished through the cooperation of all the processors and for each step,
the operations of each processor are almost identical by using one of their common features: the uniformity of
operations. Hence, each step can be considered to be a single instruction in a serial program. Two different steps
(or jobs) are identified after the parallelization process: single steps and macro steps. The notion of "single instruc-
tion" and "subroutine" of a serial program can be used to distinguish between these two steps. A single step

corresponds to a single instruction in a serial program, while a macro step corresponds to a subroutine in a serial
program. The macro steps require more complex parallel computations for all the processors, for example, the
homogeneous linear recursive equation, the hetero-homogeneous linear recursive equation, and the system of linear
equations are all macro steps. These macro steps are identified by their completeness and repeatity. The complete-
ness means that the step can be treated as an individual problem. The technique to process these macro steps paral-
lelly needs special consideration and the algorithm to solve these steps is so well-structured that finer decomposition
is not helpful or even impossible, for example, the parallel recursive doubling technique for solving the homogene-
ous linear recursive equation, or the parallel Cholesky factorization technique for solving the system linear
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equationswith a symme_c-positive-definite square matrix. The repeatity means that the problem which can be
solved in the step is so important and common that it appears repetitively at many other places; for example, many
equations of robotics algorithms are in homogeneous linear recursive form, then the procedure for parallelly solving
this problem can be applied to all these places. The method to parallelize each of these macro steps is designed
separately.

Instead of computing all the six basic robotics algorithms, we synthesize a benchmark algorithm (see Table 2)
which represents the general structure of the basic robotics parallel algorithms. This benchmark algorithm consists
of six serial steps, and each step needs the cooperation of n processors. This benchmark algorithm will be used to

demonstrate the whole process of mapping the "serial type" parallel algorithms onto a proposed parallel architecture
in the following sections.

4. Design of Algorlthmically-Speclallzed Parallel Architecture

In this section, an appropriate parallel architecture with the attributes that best match the common features of
the six basic robotics parallel algorithms is designed. The important parallel architecture attributes include the type
of machine (e.g., SIMD or MIMD mode), number of processors, synchronization requirement, processor capabili-
ties, memory organization, and network requirement. Each of these attributes is affected by one or more features of
the six basic robotics algorithms discussed in section 3. Detailed consideration for the design of this machine can be
found in [2]. With all these requirements and attributes, the appropriate parallel architecture is a reconfigurable,
dual-network, SIMD (DN-SIMD) machine for the computation of robotic algorithms.

The structure of the proposed DN-SIMD machine, as shown in Fig. 1, consists of multiple processing ele-
ments, two reconfigurable interconnection networks CRIN1 and RIN2), a set of global data registers (GDRs), three
data buffers including register output buffer, PE output buffer and input data buffer (IDB), and a set of multiplexers.
All of these are coordinated by a central control unit (CU) which is not shown in Fig. 1. The functions of each ele-
ment are briefly described here.

1. Processing Element (PE). There are n identical PEs. Each PE is essentially an arithmetic logic unit (ALU)
with attached working registers (see Fig. 1). All the ALUs perform the same programmable function synchro-
nously in a lock-step fashion under the command of the CU. Some of the PEs can be masked (disabled) for
some computation period, while other unm_qked or enabled PEs perform computations. Each PE has two input
working registers (IWRs) which are used to store two operands for each computation, and one output working
register (OWR) which is used to store the current result of each computation. The operands in the IWRs are
kept there until they are replaced. Thus, they can be used repetitively if one or two operands are common for a
series of continuous computations. An inner loop connection within a PE is designed, which connects the
OWR to one of the two IWRs. This provides an immediate inner-PE forwarding path such that the current
result can be used as an operand for the next computation immediately.

2. Global data registers (GDRs). There are n groups of data registers which correspond to the n global memory
modules. In each computation period, the registers with the same relative position in each group can be
accessed under the control of the CU. The result of each computation from each PE will be stored in the GDRs
only when either the result is the final output or the result will be used in later computations but not the
immediate following one, which can make use of the internal forwarding path for data exchange among PEs or
inner loop within PEs.

3. Reconfigurable interconnection networks. There are two sets of identical interconnection networks: RIN1 and
RIN2. They are assumed to have full connectivity including one-to-one, permutation, and broadcast capabili-
ties (e.g., the crossbar network). The RIN1 connects the GDRs to the PEs. This provides the paths for sending
required operands to the appropriate PEs. The RIN2 makes the connection from the outputs of PEs to the
inputs of PEs; this provides the direct paths for internal forwarding data exchange among PEs. It should be
noted that, if necessary, the output of PE i can be stored into its corresponding memory module i. This is not
affected by the RIN2.

4. Data b_ffers. There are three sets of data buffers. The register output buffer allows the "current computa-
tion" and the "RIN1 reconfiguration and operand fetch for the next computation" be processed at the same
time. The PE output buffer allows the "current computation" and the "RIN2 recontiguration and output data
storing" be processed simultaneously. The input data buffer (IDB) is the buffer for operands directly from
external input data.

5. Multiplexer. The n multiplexers in advance of the n PEs are used to select proper operands to enter PEs from
three possible sources: GDR, IDB, and IFD exchange. They are also under the control of the control unit.

With the functions of these elements described above, the basic mathematical operations performed by each
PE of the DN-SIMD machine involve at most two operands,
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T =A oB (3)

where A and B are two arbitrary operands and they can be scalar, vector or matrix, and "o" indicates the operation
performed by the PE. When either A or B is null, the computation only involves one operand such as the transpose
of a matrix. The operands A or B may come from five different sources. They are GDRs through RIN1, IFD
exchange through RIN2, IDB, IWR within PE, and OWR within PE through inner loop connection. The result T

may be sent to two possible destinations: GDRs directly, or PEs through RIN2 via IFD exchange. The possible
input operands and output result transfer path diagrams are illustrated in Figs. 2(a) and 2(b) respectively. In Fig.
2(a), we demonstrate all the possible source combinations except the case that the operands come from the IWR
within the PE. We assume that the time to transfer one operand from the GDR or the IDB to a PE (i.e., operand
fetching) is the same as the time to transfer the output result from a PE to the GDR (i.e., result storing) and equals to
the computation time of one basic PE operation. This time interval is called a cycle. Since operands fetching, com-
putation, and result storing can be performed simultaneously due to the data buffers designed in this system, a
three-stage pipelined operation can be performed on our DN-SIMD machine. Since a computation usually needs
two operands A and B, and if A and B come from different sources, then they can be transferred to a PE simultane-
ously in one period. In this case, the three-stage pipelined operation proceeds normally. However, ifA andB come
from the same source (e.g., GDR or IDB), then it will take 2 cycles to transfer them. This situation is called the
double transmission required (DTR) computation. In this case, a delay period must be added to the pipeline opera-
tion to synchronize the operation. This DTR computation obviously will slow down the system speed. Hence, we
need to minimize the number of DTR computations in a computational task.

5. Mapping of Parallel Robotic Algorithms onto the Dual-Network SIMD Machine

Since our DN-SIMD machine was designed to best match the common characteristics of the six basic robotics
parallel algorithms, the scheduling of their computations in our system is more straightforward with less difficulties

as compared with other general mapping problems. Based on this characteristics matching, a systematic and
efficient mapping procedure is developed to map the parallel robotic algorithms onto the proposed medium-grained
DN-SIMD machine.

The proposed mapping procedure consists of three stages [2]. In the first stage, each of the single steps of
these parallel robotic algorithms is further decomposed to a set of "subtasks" and each subtask possesses the basic
mathematical form of consisting at most two operands. On the other hand, each of the macro steps in these algo-
rithms is viewed as a subtask and is not decomposed at this stage. The first stage results in a series of parallel sub-
tasks. In the second stage, these subtasks are reordered to reduce the number of DTR operations through a neigh-
borhood scheduling algorithm. The reordered subtasks will be mapped onto the DN-SIMD machine directly in the
third stage. In the final stage, the actual implementation of the macro steps in the parallel algorithms on the DN-
SIMD machine is performed. Using the benchmark algorithm in Table 2 as an example, the details of these three
stages of our mapping procedure are discussed in the following subsections.

5.1. Subtask Assignment

Since the proposed DN-SIMD is a medium-grained machine and is synchronized at each basic mathematical
operation, each parallel algorithm must be decomposed into a series of subtasks. Each subtask is either in the basic
mathematical form which involves at most two operands or in a well-defined macro step. Although this functional
decomposition can be easily performed on the single steps, it is not the case for the macro steps, in which the data
dependencies are so complex that the decomposition based on basic computational unit is not obviously feasible. So

the macro step will be viewed as a single subtask in this stage. Consider the decomposition of the following equa-
tion

K=L x(C +E)+G ×C. (4)

Here we use three temporary variables, Tl, T2, and T 3 to rewrite Eq. (4) into four simple equations in the basic
mathematical form:

T I=C+E , T 2=LXT 1 , T 3=GXC , and K=T 2+T 3 (5)

This same technique is applied to our decomposition process for single steps. For clarity, the benchmark
algorithm is used as an example to demonstrate the technique. The decomposition result and the original algorithm
are shown in Table 2. Here, two sets of variables are inlroduced: Ti's represent the immediate results (temporary

variables) or the final outputs. If Ti is a macro subtask, then it is specially denoted as Ti. li's represent the external
input variables; that is, the variables that do not come from the outputs of other computations.

To ease the subtask scheduling in the second stage, notation simplification is performed on the above task
table to produce a simplified task table as shown in Table 3. In this table, two arrays are defined: TB[0 contains the
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identification of subtasks Ti's and OP[i] represents the corresponding operation for subtask TB[fl. Each element of
OP[i] is either a macro subtask or in the form of A. B, where A and B may be Ti (_) or Ii. Moreover, the super-

script on A or B indicates the difference between the index i of the result, Tj, [i], and the index k or I of its operand

Tj,[k] or Tj,[l], where Tj,[0 = Tj,[k] . Tj,[l]. For example, the subtask Tl[i] = T2[i+2] . T3[i-1] is denoted as
Tl = 7"22. T_31. If their indices are equal, that is, i = k or i = l, then the superscript is omitted. For example, the sub-
task T4[/_-- T5[i] . T6[i] is denoted simply as T 4 = T5 o T6. The simplified task table is the final result of this stage
and will be used as the input for the next stage.

5.2. Subtask Scheduling

To schedule the subtasks for computation, we first observe all the possible operand sources and their combi-
nations for each computation. The operand may be one of the four possible types denoted as St, Sot, St, and SOT
which correspond to four kinds of different sources. St denotes the operand from the IDB and it needs one period of
transmission time. Sot denotes the operand which is fetched by the previous computation (subtask) from the IDB
and is still in the IWR within the PE, so no Iransmission is required for this operand. ST denotes the operand from

the GDR and this operand requires one cycle of Iransmission time via the network RIN1. SoT denotes the operand
from other sources including the following three possibilities: (i) The operand which is fetched by the previous

computation from the GDR and is still in the IWR within the PE, so no transmission time is required; (ii) Current
computation result through the inner loop; (iii) Current computation result through the internal forwarding path with
data exchange provided by the network RIN2. The transmission time for the last two case,s is ignored when com-
pared to the system cycle time. Using these notations, all the possible combinations of operand sources including
the situation of only one operand arc listed below:

(s'_, s_) (st, St) (SOT,St) (Sot, Sol) (S,)

(st, Sot) Sot, SOT) (Sr , St) (SOT,SOT) (Sol)

(st, SOT) (Sot, ST) (St, S_) (St, St) (St), (SOT)

where the prime superscripts are use_l to distir!,guish different operands from the same kind of source. Among these
situations, the combinations (S_, S_) and (St, St) are DTR operations and require two cycles to transmit two
operands through the same Iransmission path. It is possible to eliminate DTR operations, if we reorder the process-
ing sc:quence without violating the cogstrai__,,tof precedence relation. That is, in these two situations, one operand ST
(or ST) can become the type SOT, or St(or S_) can become the type Sot. Then, the DTR operation phenomena can be
avoided and the unnecessary transmission can also be avoided for the efficient use of the same data repetitively and
instantly.

A neighborhood scheduling algorithm for scheduling and reordering the execution of these subtasks to minim-
ize the total number of DTR operations has been developed and is considered here.

Definition 1. For two subtasks in the kth and ith rows of the simplified task table, TB[k] and TB[I], assume
OP [k ] = A. B and OP [1] = C.D. where A, B, C, and D are operands, each with one of these possible types:

{lj, Tj, _ }. Then the subtask TB[k] is called a neighborhood of TB[I] if all the following conditions are satisfied:

(i) k < i,

(ii) C = TB[k] or C = TBi[k] or C = A or C = B or
D = TB[k] orD = TBi[k] orD =A orD =B.

From the above definition, we know that if subtask TB[I] has a previous subtask TB[k] as its neighborhood
(k </) and moreover, if these two subtasks are next to each other; i.e., l = k + 1, then at least one operand of subtask
TB[l] comes directly from the result or operand of subtask TB[k] without accessing the GDR or the IDB. This obvi-
ously will save the communication time to access global memories, and the subtask TB[I] will never be a DTR sub-
task, thus minimizing the number of DTR subtasks.

Definition 2. A subtask in the kth row of the simplified task table TB[k] is called a double transmission

required (DTR) subtask if the following two conditions are satisfied:

(i) Its operand is one of these types:
OP[k] = TB_m] . TB[n] for some m, n < k and m _ n.
OP[k] = TB'[m] .TB[n] for some m, n < kand m an.
OP[k] = TB!m] . TBJ[n] for some m, n < k and m _ n.
OP[k] = TB'[m] . TBJ[n] for some m, n < k and m _ n.
OP[kl = l[m] . l[n] for m _ n .

(ii) k = 1 or TB[k-1] is not a neighborhood of TB[k] for k > 1.
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Notice that for OP[k] = TB[m] , l[n] and OP[k] = TBi[m] . l[n], the subtask OP[k] is not a DTR subtask because its

two operands can be transmitted simultaneously through two different set of connection lines. Moreover, a subtask
involves only one operand is obviously a non-DTR subtask. For example, in the simplified task table of the bench-
mark algorithm, subtasks T 7, T 9, TI2 , TI3. T15, and TI7 are all DTR subtasks as indicated in Table 3.

From the above definition, whether a subtask is a DTR subtask depends on its "position" in the simplified
task table. A DTR subtask can become a non-DTR subtask if it is moved to the place exactly behind its neighbor-
hood. Since it is possible that the movement of a DTR subtask may introduce another new DTR subtask, this reord-

ering process is desirable only when it complies with the precedence consWaint of the original algorithm and the
number of DTR subtasks in the reordered task table is less than that in the original table. This forms the scheduling
problem; that is, to reorder the processing sequence of subtasks to reduce the number of DTR subtasks as far as pos-
sible without violating the precedence constraint of the original algorithm. This reordering process can be per-
formed by the following efficient neighborhood scheduling algorithm.

Algorithm N-Schedufing (Neighborhood Scheduling Algorithm).
Input: Simplified Task Table with n rows (i.e., n subtasks).
Output: Reordered Task Table.

N1. [Main l.x_p] Check each subtask to see if it is a DTR subtask, lfyes, try to change its position.
For k = 1 step 1 until n do

N2. [Check DTR]

Check ifTB[k] is a DTR subtask according to definition 2? If not, go to step N4.

N3. [Main Body] Try to change the position of a DTR subtask to make it into a non-DTR subtask.
If OP[k] = (TB[m] or TBa[m]) . (YB[n] or TBb[n]),

then leti _-- max(m, n);
else let i _-- 1; {* OP[k] =/[on] .l[n] *}

End {If}
While i < k-1 do

If TB[i] is a neighborhood of TB[k]. then

If {TB[i+I] is a DTR subtask} or {the insertion of TB[k] between TB[i] and
TB[i+I] will not make TB[i+I] a DTR subta__k},

then insert TB[k] behind TB[i] to make YB[k] the new (i+l)th subtask;
go to step N4

End {If}
End {If}
Let i t-- i+1;

End {While}

N4. Continue {main loop}
End {For}

END. {N-Scheduling}

As an example, the N-Scheduling algorithm is applied to the benchmark algorithm. The input is the
simplified task table in Table 3, which has a total of 18 subtasks and six of them are DTR subtasks. After applying
the N-Scheduling algorithm to this simplified task table, the reordered task table is produced as shown in Table 3, in
which all the DTR subt,x_s in the simplified task table have been removed.

5.3. Mapping Procedure

The reordered task table produced by the N-Scheduling algorithm can be mapped onto the proposed DN-
SIMD machine in a rather straightforward way because these subtasks are all single-step, simple subtasks. If the
subtasks are macro steps, then their mapping requires further consideration. Our mapping procedure at this final
stage consists of two phases. In the first phase, the subtasks including single steps and macro steps which are
viewed as single steps temporarily are mapped onto the DN-SIMD machine in a row directly. The actual mapping
of the macro steps is considered in the second phase. The output of the mapping procedure is a control table as
shown in Table 4. This table consists of ten columns and indicates the exact movement of the central control unit.

The first column represents the identification of subtasks appearing in processing order. It also represents the result

of the corresponding subtask. The second column indicates the first operand; it may be Tj (_, _, _ ) or lj for
some i. The third column indicates the source of the first operand, and there are five possibilities: the GDR, the
IDB, the IFD, the IWR and the OWR within the PE. The fourth column describes which network is used (RIN1 or
RIN2) and the required connection type on it to transmit the first operand if necessary. Columns 5 to 7 contain the
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same information as the previous three columns, but for the second operand if it exists. Column 8 indicates the

operation performed in this subtask. Column 9 indicates the destination of the result; it may be the GDR, the IFD,
or both. If the IFD is neexled, the connection type of network RIN2 is specified. Column 10 contains some com-
ment on this subtask. For a macro subtask, these columns possess somewhat different meanings. Columns 2-7 indi-

cate the corresponding information for the initial conditions of the macro subtask (similar to the parameters for a
subroutine in a serial program). Columns 9-10 indicate the corresponding information for the final result of the
macro subtask (similar to the return values of a subroutine in a serial program).

At the end of phase 1 of the mapping procedure, the control table of the benchmark algorithm is obtained as
shown in Table 4. Since there are three macro subtasks in the control table, further mapping must be performed in

phase 2. Among these macro subtasks, TI and f6 are the HLR equations, and fll is the HHLR equation. The map-

ping of HLR equations am demonstrated next.

The first-order homogeneous linear recurrence equation is defined as: Given x(0)=a(0)= null, and

a (i), 1 _<i < n, find all the x(i) for 1 _<i <_n from the following recursive equation

x(i) = x(i-1), a (i). (6)

An efficient technique called the recursive doubling technique has been found to solve this recursive equation
efficiently on an SIMD machine [7,19]. Using this technique, the parallel algorithm to solve Eq. (6) and the map-
ping diagram of this algorithm onto the proposed DN-SIMD machine are shown in Fig. 3. This diagram possesses
the same information as a control table including the sources of operands, destination of result, network used and

required connection types for each iteration. It takes an order of O([log2(n+l)] ) iterations to produce the final
results. Also notice that, in Fig. 3, we assume that the initial conditions a (i)'s come from the IDB. In fact, they

may also come from the GDR depending on whether a (i)'s are external input variables or not. In that case, its map-
ping diagram is exactly the same except that the a (i)'s are from the GDR through the network RIN1 at the begin-
ning. Similarly, the final results x(i)'s can be stored in the GDR or directly fedback to PEs depending on the neces-
sity of the next subtask. Using the similar techniques, the mapping of HHLR equations can also be performed [2].

6. Conclusions

To design a global architecture for a set of parallel robotics algorithms, the characteristics of these algorithms
are identified according to six fundamental features: degree of parallelism, uniformity of operations, fundamental
operations, data dependency, and communication requirements. Considering the characteristics matching between
the common features of the robotics algorithms and the architecture features, a medium-grained, DN-SIMD

machine is designed. It consists of two sets of reconfigurable interconnection networks. One provides the commun-
ication between the PEs and the GDRs. The other provides the internal direct feedback paths among PEs to avoid

unnecessary data storing and routing time. This machine performs three-stage pipelined operations and is synchron-
ized at each basic mathematical calculation.

With the parallel robotics algorithms and the proposed DN-SIMD parallel machine, a systematic mapping
procedure to schedule the subtasks of the parallel algorithms onto the parallel architecture is developed. This map-
ping procedure consists of three stages. At the first stage, mathematical decomposition is performed on the parallel
algorithms to achieve a series of subtasks and each subtask is either in the basic mathematical form which involves
at most two operands, or a well-structured macro subtask such as the linear recurrence equations. At the second
stage, to shorten the communication time, the processing sequence of subtasks is reordered to minimize the total
number of DTR subtasks using the Neighborhood Scheduling algorithm. At the final stage, the reordered subtasks

are mapped onto the DN-SIMD machine. In this process, the single-step subtasks can be mapped directly, while the
macro-step subtasks need further design and special technique such as the recursive doubling technique for solving
the linear recurrence equations. A benchmark algorithm was used throughout as an example to illustrate the map-

ping procedure.
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Table I. Characteristics of Basic Robotics Algorithms.

-.4
O

Algorithms

Inverse

Dynamics

Forward

Dynamics

Forward

Kinematics

Forward

Jacobian

Inverse

Jacobian

(Direct)

Inverse

Jacobian

(itcrative)

Inverse

Kinematics

(Direct)

Inverse

Kinematics

(iterative)

Type of
Parallelism

Job level

Job level

Job level

Job level

Job level

Job level

Task level

Joblevel

Degree of
Parallelism

Large grain

Large grain

Medium or

Finegrain

Medium or

F'megrain

Medium or

F'megrain

Medium or

F'me grain

Fine grain

Medium or

Finegrain

, CHARACTERISTICS

Uniformity of

Operations

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Fundamental

Operations

Matrix-Vector

Scalar ops.

Reciprocal
Matrix-Vector

Matrix Mull

Trigonometric

Matrix-Vector

Scalarops.

Reciprocal

Vectorops.

Scalar ops.

Reciprocal

Vector ops.

Scalar ops.

Reciprocal

Squareroot

Trigonometric

Scalar ops.

Reciprocal
Matrix-Vector

Trigonometric

Data

Dependency

HLR

I-ILR ,HI-ILR

SHLR, PNE

System of Linear Eqs.

HLR

HLR (Forward

& Backward)

Global

Local

Global

Communicatior

Requirement

(Regular)
Permutation

one-to-one

Permutation

Broadcast

fRegular)
Permutation

(Irregular)
Permutation

Broadcast

Permutation

Broadcast

Permutation

Broadcast

one-to-one

Broadcast

Local one-to-one

Permutation

Broadcast



Table 2. Robotics Benchmark Algorithm and Subtask Assignment.

'.,.4

Gi Equations °

GI A[i]=A[i-1]xB[i],2<i<n,A[1]=B[1] T1

G2 C[i]=A[i].D[i]

G3 E[i] =A[i].F[i]

G4 G[i] =G[i-1] +(E[i]H[i])J[/], 2 <i < n

G [1] = (E [1]H [l])J [1]

G5 K[i] =L[i](C[i] + E[i])+G [i] +C[i]

M[i] =N[i]M[i-1] +K[i], 2 <i < n

M[1] =g[1]

G6 O [i] = (E [i-1] +M[i]) + (G [i] + K [i+2])

P[i] =A[i].G[i]

Q [i ] = M [i].C [i+1] + O [i+I].P [i]

Ti Subtasks

Tl[i]=Tl[i-1] ×I1[i],2 <i < n, TI[1] =I1[1]

T2 T2[i]=Tl[i] "I2[i]

73 T3[i]=Tl[i]'13[i]

74 T4[i]=T3[i]14[i]

T5 Ts[i] = T4[i]ls[i ]

T6 7"6[i]=T6[i-1]+Ts[i],2<i<n, T6[1] = Ts[1]

T7 T7 [i ] = T2 [i ] + T3 [i ]

Ts T8[i] = T7[i]16[i]

T 9 T 9 [i ] = T6 [i ] + 72 [i ]

Tlo Tlo[i]=Ts[i]+ T9[i]

Tll Tll[i]=lT[i]Tll[i-1]+ Tlo[i], 1 <i <n, Tll[n]=Tlo[n]

T12 T12[i ] = :F6[i ] + TlO[ i+2]

T13 T13[i]=T3[i-1]+ Tll[i]

T14 T14[i]=T12[i]+ T13[i]

Tl5 T15[i] =Tl[i]'T6[i]

T16 T16[i ] = T14[i+l]'Tls[i ]

TIT T17[i] = T2[i+l]'Tll[i]

Tls Tls[i]=T16[i]+ T17[i]

where in this table, except separate indication, i is from 1 to n.

B [i ], D [i ], F [i ], H [i ], J [i ], L [i ], N [i ]; i = 1..... n; are assumed to be input variables.

B[i] is a 3x3 matrix. D[i], F[i] are 3xl vectors.

H [i ] , J [i ], L[i], N [i ] are all scalars.



Table 3. Simplified and Reordered Task Table of Benchmark Algorithm.

SIMPLIFIED TASK TABLE

ROW TB[ROW] OP[ROW]

T1 x/1

DTR

REORDERED TASK TABLE

TB[ROW] OP[ROW]

Tl X/1

2 T 2 T142 T 2 T1./2

3 T 3 T143 T3 T143

4 T 4 T3I 4 T 7 T2+T 3

5 T5 T415 T4 T314

6 T6 _61 +T5 T5 T415

7 T7 T2+T 3 x T6 T61 +Ys

T331 +TI 1TI3

14 T14 T12+T13

15 T15 TI'T 6

16 TI6 T_141"TIs

17 TI7 T'_21"Tn

18 Tl8 T16+T17

TH

8 Ts T716 T15 TI'T6

9 T 9 T6+T 2 X T 9 T6+T2

10 Tlo Ts+T9 Ts T716

1 1 T11 I7T11 +Tio Tlo Ts+T9

12 T,2 T6+T_I ] x TI2 T6+T_Io2

13 x

T 13 1"]31+TI i

T14 TI2+TI3

T16 T_141"T15

TIg T16+T17

X

DTR

where T 1 and T 6 are HLR equations and Tll is an HHLR equation.
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Table 4. Control Table for Benchmark Algorithm.

4_

1

Ti

T2

T3

T7

T4

T5

T15

T9

Ts

Tlo

T]2

TI1

TI7

Tl3

TI4

T16

T18

2 3 4 5 6 7 8

Operand Source Network Operand Source Network Operation

1 1 Type 2 2 Type

T1 IFD * I l IDB MM

TI OWR - I2 IDB MV

2Fl IWR - 13 IDB MV

T 3 OWR - T2 GDR RINI-1 VA

T 3 IWR - 14 IDB - SV

T4 OWR - 15 IDB - SV

T6 IFD * T5 OWR - VA

T6 OWR Tl GDR RINI-1 MV

T6 IWR - T2 GDR RINI-1 VA

T7 GDR RINI-1 16 IDB - SV

T s OWR T 9 GDR RINI-1 VA

IFD RIN2-2 GDR RINI-1 VAT20

17 IDB * * * *

T_1 OWR T_21 GDR RIN 1-3 VI

IWR GDR RIN1-4 VAT_31

TI3 OWR TI2 GDR RINI-1 VA

TI'14l IFD RIN2-3 T15 GDR RINI-1 VI

TI6 OWR TIT GDR RINI-1 SA

9

Output Destination

GDR IFD RIN2

X

X

×

×

X

×

×

× x 2

×

×

x 3

×

Connection type 1: straight connection;

Connection type 2: uniform module shift (d = 2);

Connection type 3: uniform module shift (d = 1)

Connection type 4: uniform module shift (d = -1)

10

Comment

* HLR Eqn.

* HLR Eqn.

* HHLR Eqn.

Result
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• PE: Processing Element
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• GDR: Global Data Register
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IR : Input Working Registcr
OR :Output Woddng Register

Figure 1. (a) Structure of Dual Network SIMD Machine.

(h) The Structure of Processing Element.
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Figure 2. Data Path Flow of Processing Element.
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F1.

F2.

Algorithm FOHRA (First-OrderHomogeneous Recurrence Algorithm).

[Initialization] Given the terms a. 0 < i <_n, let XCk)(i) be the ith sequence at the kth splitting

and s = rlog2(n+l)]. Set the sequence at the initial step, XO)(i) <---ai, 0 < i < n.

[Compute xi parallelly]

fork _ 1 tos, do

Xfk-l)(i-2 a-l) * X(k-1)(i) , if2 k-1 < i < n

XCk)(i) =

X(_-I)(i) , ifO < i < 2k-1

end {for}

Set

END FOHRA.

xi _-'- X(')(i), 1 < i < n.

-T
a(7)

a(6)

GDR I

x(7)

x(6)

a(5) x(5)

a(4) x(4)

a(3) x(3)

a(2)

a(1) 0--

a(O)
I I I I I I

RIN2 RIN2 RIN2

x(2)

x(1)

x(O)

Figure 3. Mapping Diagram of First-Order Homogeneous Linear Recurrence Equations on

DN-SIMD Machine.
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